FREE-ENERGY MODEL FOR THE INHOMOGENEOUS HARD-BODY FLUID - APPLICATION OF THE GAUSS-BONNET THEOREM

被引:53
作者
ROSENFELD, Y
机构
[1] Nuclear Research Centre-Negev, Beer-Sheva, 84190
关键词
D O I
10.1080/00268979500102241
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
By capturing the correct geometrical features, the fundamental-measure free energy density functional (Rosenfeld, Y., 1989, Phys. Rev. Lett., 63, 980; 1993, J. chem. Phys., 98, 8126; 1994, Phys. Rev. Lett., 72, 3831) leads to an accurate description of the general inhomogeneous simple (atomic) fluid. The key to its derivation is the convolution decomposition of the excluded volume for a pair of spheres in terms of characteristic functions for the geometry of the two individual spheres. The extension of this functional to molecular (complex) fluids is now made possible by uncovering the relation between the convolution decomposition for spheres and the Gauss-Bonnet theorem for the geometry of convex bodies (Rosenfeld, Y., 1994, Phys. Rev. E, 50, R3318). This provides (i) a free energy functional for hard particles, for which the accurate fundamental-measure functional for hard spheres is just a special case, and (ii) a simple geometrical test for its expected accuracy; also (iii) it constitutes a powerful new general method in density functional theory applicable to 'complex' fluids of asymmetric molecules.
引用
收藏
页码:637 / 647
页数:11
相关论文
共 42 条
[1]  
Abelson H, 1980, TURTLE GEOMETRY
[2]  
BLUM J, 1991, J STAT PHYS, V62, P1177
[3]   LIGHT-SCATTERING AND SEDIMENTATION EQUILIBRIUM OF A CONCENTRATED MULTICOMPONENT HARD ROD DISPERSION [J].
BOLHUIS, PG ;
LEKKERKERKER, HNW .
PHYSICA A, 1993, 196 (03) :375-388
[4]   ISOTROPIC, NEMATIC AND SMECTIC-A PHASES IN FLUIDS OF HARD SPHEROCYLINDERS [J].
ESPOSITO, M ;
EVANS, GT .
MOLECULAR PHYSICS, 1994, 83 (04) :835-845
[5]  
EVANS R, 1992, INHOMOGENEOUS FLUIDS
[6]   INTERFACIAL PROPERTIES AND PHASE-TRANSITIONS OF A SYSTEM OF ANISOTROPIC MOLECULES [J].
HARROWELL, P ;
OXTOBY, DW .
MOLECULAR PHYSICS, 1985, 54 (06) :1325-1333
[7]   INSTABILITY OF THE LIQUID-STATE AT HIGH-DENSITY - A DETAILED NUMERICAL-ANALYSIS [J].
HENDERSON, JR ;
SABEUR, ZA .
MOLECULAR PHYSICS, 1994, 82 (04) :765-779
[8]   LIQUID-STATE INTEGRAL-EQUATIONS AT HIGH-DENSITY - ON THE MATHEMATICAL ORIGIN OF INFINITE-RANGE OSCILLATORY SOLUTIONS [J].
HENDERSON, JR ;
SABEUR, ZA .
JOURNAL OF CHEMICAL PHYSICS, 1992, 97 (09) :6750-6758
[9]  
ISHIHARA A, 1950, J CHEM PHYS, V18, P1446
[10]   STRUCTURE OF A CONFINED FLUID OF HARD ELLIPSOIDS [J].
KALPAXIS, P ;
RICKAYZEN, G .
MOLECULAR PHYSICS, 1993, 80 (02) :391-406