A COMPLEXITY REDUCTION FOR THE LONG-STEP PATH-FOLLOWING ALGORITHM FOR LINEAR PROGRAMMING

被引:13
作者
Den Hertog, D. [1 ]
Roos, C. [1 ]
Vial, J. -Ph. [2 ]
机构
[1] Delft Univ Technol, Dept Math & Comp Sci, NL-2600 GA Delft, Netherlands
[2] Univ Geneva, Dept Commercial & Ind Econ, CH-1211 Geneva 4, Switzerland
关键词
linear programming; interior point method; logarithmic barrier function; polynomial algorithm; Goldstein-Armijo rule;
D O I
10.1137/0802006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modification of previously published long-step path-following algorithms for the solution of the linear programming problem is presented. This modification uses the simple Goldstein-Armijo rule. A root n reduction in the complexity bound is obtained, while a linesearch may still be done. Depending on the updating scheme for the barrier parameter, the resulting complexity bounds are O(n(3)L) or O(n(3.5)L).
引用
收藏
页码:71 / 87
页数:17
相关论文
共 17 条
[1]  
ANSTREICHER K. M., 1988, PREPRINT
[2]   A STANDARD FORM VARIANT, AND SAFEGUARDED LINESEARCH, FOR THE MODIFIED KARMARKAR ALGORITHM [J].
ANSTREICHER, KM .
MATHEMATICAL PROGRAMMING, 1990, 47 (03) :337-351
[3]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[4]  
FREUND R. M., 1988, POLYNOMIAL TIME ALGO
[5]   ON PROJECTED NEWTON BARRIER METHODS FOR LINEAR-PROGRAMMING AND AN EQUIVALENCE TO KARMARKAR PROJECTIVE METHOD [J].
GILL, PE ;
MURRAY, W ;
SAUNDERS, MA ;
TOMLIN, JA ;
WRIGHT, MH .
MATHEMATICAL PROGRAMMING, 1986, 36 (02) :183-209
[6]  
Gonzaga C.C., 1989, PROGR MATH PROGRAMMI, P1
[7]  
GONZAGA C. C., 1989, ES21089 COPPE FED U
[8]   LARGE STEP PATH-FOLLOWING METHODS FOR LINEAR PROGRAMMING, PART I: BARRIER FUNCTION METHOD [J].
Gonzaga, Clovis C. .
SIAM JOURNAL ON OPTIMIZATION, 1991, 1 (02) :268-279
[9]   A NEW POLYNOMIAL-TIME ALGORITHM FOR LINEAR-PROGRAMMING [J].
KARMARKAR, N .
COMBINATORICA, 1984, 4 (04) :373-395
[10]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26