DETERMINANT FORMULAS FOR THE FREE FIELD REPRESENTATIONS OF THE VIRASORO AND KAC-MOODY ALGEBRAS

被引:17
作者
FRENKEL, E
机构
[1] Department of Mathematics, Harvard University, Cambridge
关键词
D O I
10.1016/0370-2693(92)90160-6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The determinant formulas are given for the Feigin-Fuchs modules over the Virasoro algebra and for the Wakimoto modules over the affine Kac-Moody algebras. These formulas imply that some of the modules are isomorphic to the Verma modules or their duals. In particular, this is the case for all Feigin-Fuchs modules over the Virasoro algebra with central charge c greater-than-or-equal-to 25. Seiberg's condition is a simple criterion as to whether such a module is isomorphic to a dual Verma module.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 30 条
[11]  
FEIGIN B, 1988, RUSS MATH SURV, V39, P221
[12]  
Feigin B., 1990, ADV STUD CONT MATH, V7, P465
[13]  
FEIGIN BL, 1990, COMMUN MATH PHYS, V128, P161, DOI 10.1007/BF02097051
[14]  
Feigin Boris L., 1990, PHYSICS MATH STRINGS, P271
[15]  
FELDER G, 1989, NUCL PHYS B, V324, P548
[16]  
FRENKEL E, 1991, THESIS HARVARD U
[17]   CONFORMAL-INVARIANCE, UNITARITY, AND CRITICAL EXPONENTS IN 2 DIMENSIONS [J].
FRIEDAN, D ;
QIU, Z ;
SHENKER, S .
PHYSICAL REVIEW LETTERS, 1984, 52 (18) :1575-1578
[18]   NEW QUANTUM TREATMENT OF LIOUVILLE FIELD-THEORY [J].
GERVAIS, JL ;
NEVEU, A .
NUCLEAR PHYSICS B, 1983, 224 (02) :329-348
[19]  
Kac V. G., 1990, INFINITE DIMENSIONAL
[20]   STRUCTURE OF REPRESENTATIONS WITH HIGHEST WEIGHT OF INFINITE-DIMENSIONAL LIE-ALGEBRAS [J].
KAC, VG ;
KAZHDAN, DA .
ADVANCES IN MATHEMATICS, 1979, 34 (01) :97-108