COMPRESSING INCONSISTENT DATA

被引:22
作者
KORNER, J
LUCERTINI, M
机构
[1] TOR VERGATA UNIV,DIPARTIMENTO INGN ELETTRON,I-00133 ROME,ITALY
[2] CNR,IASI,ROME,ITALY
[3] UNIV BIELEFELD,W-4800 BIELEFELD,GERMANY
[4] TOR VERGATA UNIV,CTR VITO VOLTERRA,I-00133 ROME,ITALY
关键词
D O I
10.1109/18.335882
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In a frequent practical situation we possess inconsistent fragmentary data concerning some industrial process or natural phenomenon. It is an interesting and reasonable task to assess what the most concise way to store or transmit them would be. In this paper we consider the zero-error case of the problem, i.e., we would like to save all these data incorporating them into the most concise but necessarily alternative consistent data structures. More precisely, we want to find a set of alternatives which requires the minimum total storage place. From the mathematical viewpoint our model is information-theoretic and gives a common framework to deal with many combinatorial problems in the theory of extremal hypergraphs. From the practical viewpoint the interest of the mathematical theory is to produce new information measures capturing the inconsistency in the data.
引用
收藏
页码:706 / 715
页数:10
相关论文
共 61 条
[21]  
GARGANO L, IN PRESS J COMB TH A
[22]   SOME PROBLEMS OF LOVASZ CONCERNING THE SHANNON CAPACITY OF A GRAPH [J].
HAEMERS, W .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1979, 25 (02) :231-232
[23]  
HAJEK B, 1987, CODING CCOMPUTATION, P127
[24]  
Hwang FK., 1987, STUD SCI MATH HUNG, V22, P257
[25]  
Katona G., 1973, PERIOD MATH HUNG, V3, P19
[26]  
Katona G., 1967, STUD SCI MATH HUNG, V2, P23
[27]  
KATONA GOH, 1974, MATH CTR TRACTS, V56, P13
[28]  
Kleitman D. J., 1973, Discrete Mathematics, V6, P255, DOI 10.1016/0012-365X(73)90098-8
[29]   ON THE CAPACITY OF UNIFORM HYPERGRAPHS [J].
KORNER, J ;
MARTON, K .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (01) :153-156
[30]   NEW BOUNDS FOR PERFECT HASHING VIA INFORMATION-THEORY [J].
KORNER, J ;
MARTON, K .
EUROPEAN JOURNAL OF COMBINATORICS, 1988, 9 (06) :523-530