A CENTRAL-LIMIT-THEOREM FOR QUADRATIC-FORMS IN STRONGLY DEPENDENT LINEAR VARIABLES AND ITS APPLICATION TO ASYMPTOTICAL NORMALITY OF WHITTLES ESTIMATE

被引:234
作者
GIRAITIS, L
SURGAILIS, D
机构
[1] Institute of Mathematics and Cybernetics, Vilnius
关键词
D O I
10.1007/BF01207515
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A central limit theorem for quadratic forms in strongly dependent linear (or moving average) variables is proved, generalizing the results of Avram [1] and Fox and Taqqu [3] for Gaussian variables. The theorem is applied to prove asymptotical normality of Whittle's estimate of the parameter of strongly dependent linear sequences. © 1990 Springer-Verlag.
引用
收藏
页码:87 / 104
页数:18
相关论文
共 8 条
[2]   EFFICIENT PARAMETER-ESTIMATION FOR SELF-SIMILAR PROCESSES [J].
DAHLHAUS, R .
ANNALS OF STATISTICS, 1989, 17 (04) :1749-1766
[3]   CENTRAL LIMIT-THEOREMS FOR QUADRATIC-FORMS IN RANDOM-VARIABLES HAVING LONG-RANGE DEPENDENCE [J].
FOX, R ;
TAQQU, MS .
PROBABILITY THEORY AND RELATED FIELDS, 1987, 74 (02) :213-240
[4]   LARGE-SAMPLE PROPERTIES OF PARAMETER ESTIMATES FOR STRONGLY DEPENDENT STATIONARY GAUSSIAN TIME-SERIES [J].
FOX, R ;
TAQQU, MS .
ANNALS OF STATISTICS, 1986, 14 (02) :517-532
[5]  
Grenander U., 1958, TOEPLITZ FORMS THEIR
[6]   ASYMPTOTIC THEORY OF LINEAR TIME-SERIES MODELS [J].
HANNAN, EJ .
JOURNAL OF APPLIED PROBABILITY, 1973, 10 (01) :130-145
[7]  
Ibragimov IA, 1971, INDEPENDENT STATIONA
[8]  
Natanson I.P., 1955, THEORY FUNCTIONS REA, V1