Studies documenting the depletion of the ozone layer and the resulting increases in UV-B radiation (280-320 nm) at the Earth's surface have served to focus attention on the biological effects of UV light. One obvious target for UV-B-induced damage is DNA. Although all biological tissues are rich in UV-absorbing agents (largely nucleic acids and proteins) and plants produce additional UV-absorbing pigments, no DNA in superficial tissue can completely avoid UV exposure. Plants, like all living organisms, must have some capacity for the repair of UV-induced DNA damage. Because plants are unique in the obligatory nature of their exposure to UV, it is also conceivable that they may have evolved particularly efficient mechanisms for the elimination of UV-induced DNA damage. This review will summarize what we know about DNA repair mechanisms in higher plants. Readers interested in broader aspects of W-induced damage and UV filters are directed to recent reviews (Middleton and Teramura, 1994; Strid et al., 1994; Fiscus and Booker, 1995). Our knowledge of DNA repair mechanisms in plants lags far behind our understanding of these pathways in animals, and a significant number of questions concerning the basic phenomenology of DNA repair in plants remain to be addressed.