RADIATION BY SOLITONS DUE TO HIGHER-ORDER DISPERSION

被引:149
作者
KARPMAN, VI [1 ]
机构
[1] RISO NATL LAB,DEPT OPT & FLUID DYNAM,DK-4000 ROSKILDE,DENMARK
来源
PHYSICAL REVIEW E | 1993年 / 47卷 / 03期
关键词
D O I
10.1103/PhysRevE.47.2073
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the Korteweg-de Vries (KdV) and nonlinear Schrodinger (NS) equations with higher-order derivative terms describing dispersive corrections. Conditions of existence of stationary and radiating solitons of the fifth-order KdV equation are obtained. An asymptotic time-dependent solution to the latter equation, describing the soliton radiation, is found. The radiation train may be in front as well as behind the soliton, depending on the sign of dispersion. The change rate of the soliton due to the radiation is calculated. A modification of the WKB method, that permits one to describe in a simple and general way the radiation of KdV and NS, as well as other types. of solitons, is developed. From the WKB approach it follows that the soliton radiation is a result of a tunneling transformation of the non-linearly self-trapped wave into the free-propagating radiation.
引用
收藏
页码:2073 / 2082
页数:10
相关论文
共 22 条
[11]  
KARPMAN VI, 1984, ZH EKSP TEOR FIZ, V60, P242
[12]   OSCILLATORY SOLITARY WAVES IN DISPERSIVE MEDIA [J].
KAWAHARA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1972, 33 (01) :260-&
[13]   EFFECTS OF HIGHER-ORDER DISPERSION ON ENVELOPE SOLITONS [J].
KUEHL, HH ;
ZHANG, CY .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1990, 2 (05) :889-900
[14]   SOLITON STABILITY IN PLASMAS AND HYDRODYNAMICS [J].
KUZNETSOV, EA ;
RUBENCHIK, AM ;
ZAKHAROV, VE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1986, 142 (03) :103-165
[15]  
Landau L. D., 1965, QUANTUM MECH
[16]   HIROTAS METHOD AND THE SINGULAR MANIFOLD EXPANSION [J].
NOZAKI, K .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1987, 56 (09) :3052-3054
[17]   STATIONARY PROPAGATING MAGNETIC ELECTRON VORTICES [J].
NYCANDER, J ;
PAVLENKO, VP .
PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1991, 3 (06) :1386-1391
[18]   STRUCTURAL STABILITY OF THE KORTEWEG-DEVRIES SOLITONS UNDER A SINGULAR PERTURBATION [J].
POMEAU, Y ;
RAMANI, A ;
GRAMMATICOS, B .
PHYSICA D, 1988, 31 (01) :127-134
[19]   BLOW-UP IN NONLINEAR SCHROEDINGER EQUATIONS .1. A GENERAL-REVIEW [J].
RASMUSSEN, JJ ;
RYPDAL, K .
PHYSICA SCRIPTA, 1986, 33 (06) :481-497
[20]   NONEXISTENCE OF SMALL-AMPLITUDE BREATHER SOLUTIONS IN PHI-4 THEORY [J].
SEGUR, H ;
KRUSKAL, MD .
PHYSICAL REVIEW LETTERS, 1987, 58 (08) :747-750