CONSERVATION OF INTEGRALS AND SYMPLECTIC STRUCTURE IN THE INTEGRATION OF DIFFERENTIAL-EQUATIONS BY MULTISTEP METHODS

被引:30
作者
EIROLA, T [1 ]
SANZSERNA, JM [1 ]
机构
[1] HELSINKI UNIV TECHNOL,INST MATH,SF-02150 ESPOO 15,FINLAND
关键词
D O I
10.1007/BF01385510
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the question of whether multistep methods inherit in some sense quadratic first integrals possessed by the differential system being integrated. We also investigate whether, in the integration of Hamiltonian systems, multistep methods conserve the symplectic structure of the phase space.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 17 条
[1]  
Arnold V. I., 1989, MATH METHODS CLASSIC, V60
[2]   ON THE EQUIVALENCE OF A-STABILITY AND G-STABILITY [J].
BAIOCCHI, C ;
CROUZEIX, M .
APPLIED NUMERICAL MATHEMATICS, 1989, 5 (1-2) :19-22
[3]   SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS [J].
CHANNELL, PJ ;
SCOVEL, C .
NONLINEARITY, 1990, 3 (02) :231-259
[4]  
DAHLQUIST G, 1983, SIAM J NUMER ANAL, V20, P1130, DOI 10.1137/0720082
[5]  
Dahlquist G., 1978, BIT (Nordisk Tidskrift for Informationsbehandling), V18, P384, DOI 10.1007/BF01932018
[6]  
DEFRUTOS J, 1990, COMPUT METHOD APPL M, V80, P417, DOI 10.1016/0045-7825(90)90046-O
[7]  
FENG K, 1986, J COMPUT MATH, V4, P279
[8]   CANONICAL RUNGE-KUTTA METHODS [J].
LASAGNI, FM .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1988, 39 (06) :952-953
[9]  
RUTH R, 1984, IEEE T NUCL SCI, V30, P269
[10]   RUNGE-KUTTA SCHEMES FOR HAMILTONIAN-SYSTEMS [J].
SANZSERNA, JM .
BIT, 1988, 28 (04) :877-883