DYNAMICS ON THE GROUP MANIFOLD AND PATH INTEGRAL

被引:59
作者
MARINOV, MS [1 ]
TERENTYEV, MV [1 ]
机构
[1] MOSCOW THEORET & EXPTL PHYS INST,MOSCOW,USSR
来源
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS | 1979年 / 27卷 / 11-1期
关键词
D O I
10.1002/prop.19790271102
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical and quantal dynamics on the compact simple Lie group and on a sphere of arbitrary dimensionality are considered. The accuracy of the semiclassical approximation for Green's functions is discussed. Various path integral representations of Green's functions are presented. The special features of these representations due to the compactness and curvature are analysed. Basic results of the theory of Lie algebras and Lie groups used in the main text are presented in the Appendix. Copyright © 1979 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:511 / 545
页数:35
相关论文
共 35 条
[11]   WHEN IS SUM OVER CLASSICAL PATHS EXACT [J].
DOWKER, JS .
JOURNAL OF PHYSICS PART A GENERAL, 1970, 3 (05) :451-&
[12]  
Dynkin E. B., 1955, USP MAT NAUK, V10, P3
[13]   PATH INTEGRALS IN POLAR CO-ORDINATES [J].
EDWARDS, SF ;
GULYAEV, YV .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1964, 279 (1376) :229-+
[14]  
Eisenhart L.P., 1933, CONTINUOUS GROUPS TR
[15]  
ESKIN LD, 1963, PAMYATI CHEBOTAREVA, P113
[16]  
Feynman R.P., 1965, QUANTUM MECH PATH IN
[17]   SPACE-TIME APPROACH TO NON-RELATIVISTIC QUANTUM MECHANICS [J].
FEYNMAN, RP .
REVIEWS OF MODERN PHYSICS, 1948, 20 (02) :367-387
[18]   POINT CANONICAL TRANSFORMATIONS IN PATH INTEGRAL [J].
GERVAIS, JL ;
JEVICKI, A .
NUCLEAR PHYSICS B, 1976, 110 (01) :93-112
[19]  
Gilmore R., 1974, LIE GROUPS LIE ALGEB
[20]  
Gradshteyn I. S., 1980, TABLES OF INTEGRALS