MICROWAVE IMAGERY - ANALYTICAL METHOD AND MAXIMUM-ENTROPY METHOD

被引:6
作者
BARIBAUD, M
机构
[1] LEMO-ENSERG, Grenoble France, Grenoble Cédex, 38016, 23 Avenue des Martyrs
关键词
D O I
10.1088/0022-3727/23/3/001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The principle of active microwave imagery is as follows: the medium and the object are traversed by an electromagnetic wave of known characteristics and the image of the object is then reconstituted from the scattered field measured beyond the object. Unfortunately the problem is ill-posed and the results are not unique. The analytical method uses the assumption div J=0; this assumption is discussed and compared with other methods and the results of numerical simulation are given. The maximum entropy method is used to obtain the image whose structure is the nearest figure. The images obtained by this method have a good accuracy and show proof of the high standing of this method of image reconstruction. © 1990 IOP Publishing Ltd.
引用
收藏
页码:269 / 288
页数:20
相关论文
共 43 条
[1]   3-DIMENSIONAL IMAGE-CONSTRUCTION TECHNIQUE AND ITS APPLICATION TO COHERENT MICROWAVE DIAGNOSTICS [J].
ADAMS, MF ;
ANDERSON, AP .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1980, 127 (03) :138-142
[2]  
ARGENCE E, 1964, THEORIE GUIDES CAVIT
[3]   TOMOGRAPHIC IMAGE RECONSTITUTION OF BIOLOGICAL OBJECTS FROM COHERENT MICROWAVE DIFFRACTION DATA [J].
BARIBAUD, M ;
DUBOIS, F ;
FLOYRAC, R ;
KOM, M ;
WANG, S .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1982, 129 (06) :356-359
[4]   TOMOGRAPHIC IMAGE RECONSTITUTION OF OBJECTS FROM MULTI-INCIDENCE MICROWAVE EXPLORATION [J].
BARIBAUD, M ;
DUBOIS, F ;
FLOYRAC, R ;
WANG, S .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1985, 132 (05) :286-290
[5]  
BARIBAUD M, 1988, 18TH P EUR MICR C ST, P891
[6]  
BELLANGER M, 1981, TRAITEMENT NUMERIQUE
[7]  
Boerner W. M., 1985, INVERSE METHODS ELEC
[8]  
BOJARSKI NN, 1982, IEEE T ANTENN PROPAG, V30, P1037, DOI 10.1109/TAP.1982.1142884
[9]  
Born M., 1964, PRINCIPLES OPTICS
[10]  
CARDOZO RES, 1989, THESIS INP GRENOBLE