BOUNDARY-INDUCED PHASE-TRANSITIONS IN EQUILIBRIUM AND NONEQUILIBRIUM SYSTEMS

被引:50
作者
HENKEL, M
SCHUTZ, G
机构
[1] UNIV GENEVA,DEPT PHYS THEOR,CH-1211 GENEVA 4,SWITZERLAND
[2] WEIZMANN INST SCI,DEPT PHYS,IL-76100 REHOVOT,ISRAEL
来源
PHYSICA A | 1994年 / 206卷 / 1-2期
关键词
D O I
10.1016/0378-4371(94)90124-4
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Boundary conditions may change the phase diagram of non-equilibrium statistical systems like the one-dimensional asymmetric simple exclusion process with and without particle number conservation. Using the quantum Hamiltonian approach, the model is mapped onto an XXZ quantum chain and solved using the Bethe ansatz. This system is related to a two-dimensional vertex model in thermal equilibrium. The phase transition caused by a point-like boundary defect in the dynamics of the one-dimensional exclusion model is in the same universality class as a continuous (bulk) phase transition of the two-dimensional vertex model caused by a line defect at its boundary.
引用
收藏
页码:187 / 195
页数:9
相关论文
共 22 条
[1]   REACTION-DIFFUSION PROCESSES AS PHYSICAL REALIZATIONS OF HECKE ALGEBRAS [J].
ALCARAZ, FC ;
RITTENBERG, V .
PHYSICS LETTERS B, 1993, 314 (3-4) :377-380
[2]   CONFORMAL-INVARIANCE, THE XXZ CHAIN AND THE OPERATOR CONTENT OF TWO-DIMENSIONAL CRITICAL SYSTEMS [J].
ALCARAZ, FC ;
BARBER, MN ;
BATCHELOR, MT .
ANNALS OF PHYSICS, 1988, 182 (02) :280-343
[3]  
ALCARAZ FC, CERN TH693593 PREPR
[4]  
ALCARAZ FC, IN PRESS ANN PHYS
[5]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[6]  
DERRIDA B, 1993, SACLAY PREPRINT
[7]  
GRIMM U, 1993, J STAT PHYS, V71, P927
[8]   BETHE SOLUTION FOR THE DYNAMIC-SCALING EXPONENT OF THE NOISY BURGERS-EQUATION [J].
GWA, LH ;
SPOHN, H .
PHYSICAL REVIEW A, 1992, 46 (02) :844-854
[9]   FINITE-SIZE EFFECTS AND SHOCK FLUCTUATIONS IN THE ASYMMETRIC SIMPLE-EXCLUSION PROCESS [J].
JANOWSKY, SA ;
LEBOWITZ, JL .
PHYSICAL REVIEW A, 1992, 45 (02) :618-625
[10]   LOW-TEMPERATURE THERMODYNAMICS OF DELTA GREATER THAN OR EQUAL TO 1 HEISENBERG-ISING RING [J].
JOHNSON, JD ;
MCCOY, BM .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1972, 6 (04) :1613-+