LATTICE GASES WITH STATIC DISORDER - RENORMALIZATION OF MEAN-FIELD THEORY

被引:6
作者
OSSENDRIJVER, AJH [1 ]
SANTOS, A [1 ]
ERNST, MH [1 ]
机构
[1] UNIV EXTREMADURA,DEPT FIS,E-06071 BADAJOZ,SPAIN
关键词
LORENTZ LATTICE GAS; BACKSCATTERING; RING APPROXIMATION;
D O I
10.1007/BF01049959
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Lattice gas automata are used to model transport phenomena in random media with static disorder. If the interactions are repulsive, there is a large probability of backscattering or retracing collision sequences. In that case the Boltzmann equation or mean field theory breaks down, even in the limit of a low concentration of scatterers. Here sequences of uncorrelated and retracing collisions are of equal importance. The repeated ring approximation is used to resum the retracing trajectories, and the renormalized transport coefficients are calculated in the low-density limit, not only for hard core scatterers (diamonds, hexagons, triangles), but also for mixed point scatterers (mirrors, rotators, reflectors). The results are compared with ''tensive computer simulations.
引用
收藏
页码:1015 / 1042
页数:28
相关论文
共 11 条
[1]   BREAKDOWN OF THE BOLTZMANN-EQUATION IN CELLULAR-AUTOMATA LATTICE GASES [J].
ERNST, MH ;
VANVELZEN, GA ;
BINDER, PM .
PHYSICAL REVIEW A, 1989, 39 (08) :4327-4329
[2]   EVIDENCE FOR UNIVERSAL ASYMPTOTIC DECAY OF VELOCITY FLUCTUATIONS IN LORENTZ GASES [J].
FRENKEL, D ;
VANLUIJN, F ;
BINDER, PM .
EUROPHYSICS LETTERS, 1992, 20 (01) :7-12
[3]  
GUNN JMF, 1985, J PHYS A, V18, pL1035
[4]  
OSSENDRIJVER AJH, IN PRESS J STAT PHYS
[5]  
OSSENDRIJVER AJH, UNPUB PHYSICA
[6]  
RUIJGROK TW, 1988, PHYS LETT A, V123, P515
[7]  
VANBEIJEREN H, UNPUB J STAT PHYS
[8]   LATTICE LORENTZ GAS - KINETIC-THEORY [J].
VANVELZEN, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4953-4976
[9]   DETERMINISTIC LATTICE LORENTZ GAS .1. CHIRAL MODEL [J].
VANVELZEN, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (04) :787-806
[10]   DETERMINISTIC LATTICE LORENTZ GAS .2. MIRROR MODEL [J].
VANVELZEN, GA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (04) :807-825