Hypotension- and hypertension-evoked expression of the protein product, Fos, of the immediate early gene c-fos was assessed throughout the rat brain as an approach for describing the neuronal populations that respond to alterations in arterial blood pressure. Conscious, chronically catheterized rats were treated with the vasoconstricting drug phenylephrine or the vasodilatating drug hydralazine to increase or decrease, respectively, arterial pressure by approx. 40 mmHg for 90 min. Rats were then anaesthetized, fixed by vascular perfusion, and sections representing the entire brain were processed for the immunocytochemical localization of Fos. In control rats treated with isotonic saline, few Fos-positive neurons were observed. In contrast, phenylephrine and hydralazine treatments resulted in different, yet reproducible, patterns of Fos expression in the brain, with hydralazine evoking Fos expression in more brain regions than phenylephrine. Brain regions containing Fos-positive neurons in rats treated with hydralazine included nucleus tract-us solitarius, area postrema, caudal ventrolateral medulla, rostral ventrolateral medulla, bed nucleus of the stria terminalis, amygdala, paraventricular nucleus, supraoptic nucleus, subfornical organ and the Islands of Calleja. The nucleus tractus solitarius, paraventricular nucleus and the amygdala also contained Fos-positive neurons in phenylephrine-treated rats, although the number of Fos-positive neurons was always less than that noted in the hydralazine-treated rats and the location of Fos-positive neurons within these regions tended to differ between treatments. These results generally fit within an emerging understanding of brain circuitry underlying cardiovascular regulation.