BOUNDARY AND INTERFACE CONDITIONS WITHIN A FINITE-ELEMENT PRECONDITIONER FOR SPECTRAL METHODS

被引:17
作者
CANUTO, C [1 ]
PIETRA, P [1 ]
机构
[1] CNR,IST ANAL NUMER,I-27100 PAVIA,ITALY
关键词
D O I
10.1016/0021-9991(90)90040-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The performances of a finite element preconditioner in the iterative solution of spectral collocation schemes for elliptic boundary value problems is investigated. It is shown how to make the preconditioner cheap by ADI iterations and how to take advantage of the finite element properties in enforcing Neumann and interface conditions in the spectral schemes. © 1990.
引用
收藏
页码:310 / 343
页数:34
相关论文
共 18 条
[11]  
FUNARO D, 1981, THESIS U PAVIA
[12]   TSCHEBYSCHEV 3-D SPECTRAL AND 2-D PSEUDOSPECTRAL SOLVERS FOR THE HELMHOLTZ-EQUATION [J].
HALDENWANG, P ;
LABROSSE, G ;
ABBOUDI, S ;
DEVILLE, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 1984, 55 (01) :115-128
[14]  
MARION Y, 1986, 6EME C INT SIM EC EL
[15]   SPECTRAL METHODS FOR PROBLEMS IN COMPLEX GEOMETRIES [J].
ORSZAG, SA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1980, 37 (01) :70-92
[16]   THE NUMERICAL SOLUTION OF PARABOLIC AND ELLIPTIC DIFFERENTIAL EQUATIONS [J].
PEACEMAN, DW ;
RACHFORD, HH .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :28-41
[17]   PRECONDITIONED CONJUGATE RESIDUAL METHODS FOR THE SOLUTION OF SPECTRAL EQUATIONS [J].
WONG, YS ;
ZANG, TA ;
HUSSAINI, MY .
COMPUTERS & FLUIDS, 1986, 14 (02) :85-95
[18]  
Yanenko N. N., 1971, METHOD FRACTIONAL ST