A QUADRATICALLY CONVERGENT O(ROOT-N L)-ITERATION ALGORITHM FOR LINEAR-PROGRAMMING

被引:68
作者
YE, Y
GULER, O
TAPIA, RA
ZHANG, Y
机构
[1] DELFT UNIV TECHNOL,FAC TECH MATH & INFORMAT,DELFT,NETHERLANDS
[2] RICE UNIV,CTR RES PARALLEL COMPUTAT,HOUSTON,TX 77251
[3] RICE UNIV,DEPT MATH SCI,HOUSTON,TX 77251
[4] UNIV MARYLAND,DEPT MATH & STAT,BALTIMORE,MD 21201
关键词
LINEAR PROGRAMMING; PRIMAL AND DUAL; SUPERLINEAR AND QUADRATIC CONVERGENCE; POLYNOMIALITY;
D O I
10.1007/BF01581242
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Recently, Ye,Tapia and Zhang (1991) demonstrated that Mizuno-Todd-Ye's predictor-corrector interior-point algorithm for linear programming maintains the O(square-root n L)-iteration complexity while exhibiting superlinear convergence of the duality gap to zero under the assumption that the iteration sequence converges, and quadratic convergence of the duality gap to zero under the assumption of nondegeneracy. In this paper we establish the quadratic convergence result without any assumption concerning the convergence of the iteration sequence or nondegeneracy. This surprising result, to our knowledge, is the first instance of a demonstration of polynomiality and superlinear (or quadratic) convergence for an interior-point algorithm which does not assume the convergence of the iteration sequence or non-degeneracy.
引用
收藏
页码:151 / 162
页数:12
相关论文
共 19 条
[1]  
ADLER I, 1990, CONT MATH, V114, P189
[2]  
ELBAKRY A, 1991, TR9115 RIC U DEP MAT
[3]  
GULER O, 1993, IN PRESS MATH PROGRA
[4]   ON APPROXIMATE SOLUTIONS OF SYSTEMS OF LINEAR INEQUALITIES [J].
HOFFMAN, AJ .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (04) :263-265
[5]  
JI J, 1991, TR9123 RIC U DEP MAT
[6]  
JI J, 1991, INTERIOR POINT METHO
[7]   HOMOTOPY CONTINUATION METHODS FOR NONLINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MEGIDDO, N ;
NOMA, T .
MATHEMATICS OF OPERATIONS RESEARCH, 1991, 16 (04) :754-774
[8]   A POLYNOMIAL-TIME ALGORITHM FOR A CLASS OF LINEAR COMPLEMENTARITY-PROBLEMS [J].
KOJIMA, M ;
MIZUNO, S ;
YOSHISE, A .
MATHEMATICAL PROGRAMMING, 1989, 44 (01) :1-26
[9]  
KOJIMA M, IN PRESS SIAM J OPTI
[10]  
MCSHANE K, 1991, UNPUB SUPERLINEARLY