SYMMETRY-BREAKING IN DISTRIBUTED SYSTEMS AND MODULATIONAL SPATIOTEMPORAL INTERMITTENCY

被引:8
作者
KURTHS, J
PIKOVSKY, AS
机构
[1] Max-Planck-Arbeitsgruppe 'Nichtlineare Dynamik', Universität Potsdam, Potsdam
关键词
D O I
10.1016/0960-0779(94)00198-Y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that at the symmetry-breaking transition of spatio-temporal chaos a new type of spatio-temporal intermittency is observed. This regime is a direct analogue of modulational intermittency previously investigated in nondistributed systems. Statistical properties of modulational spatio-temporal intermittency are investigated, and correspondence to the Kardar-Parisi-Zhang equation is established.
引用
收藏
页码:1893 / 1899
页数:7
相关论文
共 19 条
[1]   Spacetime chaos in coupled map lattices [J].
Bunimovich, L. A. ;
Sinai, Ya G. .
NONLINEARITY, 1988, 1 (04) :491-516
[2]   CASCADING SYNCHRONIZED CHAOTIC SYSTEMS [J].
CARROLL, TL ;
PECORA, LM .
PHYSICA D, 1993, 67 (1-3) :126-140
[3]   TRANSITION TO TURBULENCE VIA SPATIOTEMPORAL INTERMITTENCY [J].
CHATE, H ;
MANNEVILLE, P .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :112-115
[4]  
CRUTCHFIELD JP, 1987, DIRECTIONS CHAOS, V1
[5]  
Family F., 1991, DYNAMICS FRACTAL SUR
[6]   INTERMITTENCY ASSOCIATED WITH THE BREAKDOWN OF THE CHAOS SYMMETRY [J].
FUJISAKA, H ;
KAMIFUKUMOTO, H ;
INOUE, M .
PROGRESS OF THEORETICAL PHYSICS, 1983, 69 (01) :333-337
[7]   A NEW INTERMITTENCY IN COUPLED DYNAMICAL-SYSTEMS [J].
FUJISAKA, H ;
YAMADA, T .
PROGRESS OF THEORETICAL PHYSICS, 1985, 74 (04) :918-921
[8]   SPATIOTEMPORAL CHAOS AND LOCALIZATION [J].
GIACOMELLI, G ;
POLITI, A .
EUROPHYSICS LETTERS, 1991, 15 (04) :387-392
[9]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[10]   AMPLITUDE UNIVERSALITY FOR DRIVEN INTERFACES AND DIRECTED POLYMERS IN RANDOM-MEDIA [J].
KRUG, J ;
MEAKIN, P ;
HALPINHEALY, T .
PHYSICAL REVIEW A, 1992, 45 (02) :638-653