A CLASSIFICATION EM ALGORITHM FOR CLUSTERING AND 2 STOCHASTIC VERSIONS

被引:456
作者
CELEUX, G
GOVAERT, G
机构
[1] INST NATL RECH INFORMAT & AUTOMAT,ROCQUENCOURT,FRANCE
[2] UNIV TECHNOL COMPIEGNE,CNRS,URA 817,F-60206 COMPIEGNE,FRANCE
关键词
CLUSTERING; K-MEANS; CLASSIFICATION MAXIMUM LIKELIHOOD; OPTIMIZATION IN STATISTICS; STOCHASTIC EM; SIMULATED ANNEALING;
D O I
10.1016/0167-9473(92)90042-E
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Setting the optimization-based clustering methods under the classification maximum likelihood approach, we define and study a general Classification EM algorithm. Then, we derive from this algorithm two stochastic algorithms, incorporating random perturbations, to reduce the initial-position dependence of the classical optimization clustering algorithms. Numerical experiments, reported for the variance criterion, show that both stochastic algorithms perform well compared with the standard k-means algorithm which is a particular version of the Classification EM algorithm.
引用
收藏
页码:315 / 332
页数:18
相关论文
共 24 条
  • [1] [Anonymous], 1988, ALGORITHMS CLUSTERIN
  • [2] Arthanari T., 1981, MATH PROGRAMMING STA
  • [3] LOCAL CONVERGENCE ANALYSIS OF A GROUPED VARIABLE VERSION OF COORDINATE DESCENT
    BEZDEK, JC
    HATHAWAY, RJ
    HOWARD, RE
    WILSON, CA
    WINDHAM, MP
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1987, 54 (03) : 471 - 477
  • [4] ASYMPTOTIC-BEHAVIOR OF CLASSIFICATION MAXIMUM LIKELIHOOD ESTIMATES
    BRYANT, P
    WILLIAMSON, JA
    [J]. BIOMETRIKA, 1978, 65 (02) : 273 - 281
  • [5] LARGE-SAMPLE RESULTS FOR OPTIMIZATION-BASED CLUSTERING METHODS
    BRYANT, PG
    [J]. JOURNAL OF CLASSIFICATION, 1991, 8 (01) : 31 - 44
  • [6] BRYANT PG, 1986, CLASSIFICATION TOOL, P33
  • [7] CELEUX G, 1990, CR ACAD SCI I-MATH, V310, P119
  • [8] CLUSTERING CRITERIA FOR DISCRETE-DATA AND LATENT CLASS MODELS
    CELEUX, G
    GOVAERT, G
    [J]. JOURNAL OF CLASSIFICATION, 1991, 8 (02) : 157 - 176
  • [9] CELEUX G, 1988, R S A, V36, P43
  • [10] CELEUX G, 1986, INRIA563 RAPP RECH