LIMIT THEOREMS FOR MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES .2. CASE OF AN ARBITRARY LINEAR FUNCTIONAL

被引:24
作者
ATHREYA, KB
机构
[1] Mathematics Research Center United States Army, The University of Wisconsin, Madison, 53706, Wisconsin
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 13卷 / 3-4期
关键词
D O I
10.1007/BF00539201
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this sequel to [1] we develop limit theorems for the stochastic process {η · X(t); t>=0} where η is a general vector in the k dimensional complex vector space. Using the spectral representation of M(t) one can define for η three parameters: a real number a=a(η), an integer γ=γ(η) and an index set I=I(η). If 2 a<λ1 then there exist random variables Yjand real numbers bjfor jεI (η) such that {Mathematical expression} converges to zero in mean square. If 2 a<=λ1 the same results as in the eigenvector case hold. © 1969 Springer-Verlag.
引用
收藏
页码:204 / &
相关论文
共 5 条
[1]  
ATHREYA K, 1967, THESIS STANFORD U
[2]   LIMIT THEOREMS FOR MULTITYPE CONTINUOUS TIME MARKOV BRANCHING PROCESSES .I. CASE OF AN EIGENVECTOR LINEAR FUNCTIONAL [J].
ATHREYA, KB .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1969, 12 (04) :320-&
[3]  
ATHREYA KB, 1968, ANN MATH STATISTICS, V39, P345
[4]   ADDITIONAL LIMIT THEOREMS FOR INDECOMPOSABLE MULTIDIMENSIONAL GALTON-WATSON PROCESSES [J].
KESTEN, H ;
STIGUM, BP .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1463-&
[5]  
[No title captured]