EXACT SIMILARITY SOLUTIONS OF IDEAL MHD EQUATIONS FOR PLANE MOTIONS

被引:31
作者
GALAS, F
RICHTER, EW
机构
[1] Institut für Mathematische Physik, Technische Universität Braunschweig, W-3300 Braunschweig
来源
PHYSICA D | 1991年 / 50卷 / 02期
关键词
D O I
10.1016/0167-2789(91)90181-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For the non-linear two-dimensional ideal MHD equations we use the known Lie point symmetries and for the case of adiabatic exponent gamma = 2 we give local Lie-Backlund symmetries. We find exact solutions using similarity analysis. Among the calculated similarity solutions describing plasma expansion into vacuum, shock waves and spiral flows with plasma sources.
引用
收藏
页码:297 / 307
页数:11
相关论文
共 17 条
  • [1] Barenblatt G, 1979, SIMILARITY SELF SIMI
  • [2] BECKER DA, 1990, Z NATURFORSCH A, V4, P1219
  • [3] Bluman G. W., 1989, SYMMETRIES DIFFERENT
  • [4] SIMILARITY SOLUTIONS FOR THE TWO-DIMENSIONAL NONSTATIONARY IDEAL MHD EQUATIONS
    FUCHS, JC
    RICHTER, EW
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (11): : 3135 - 3157
  • [5] LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .1. THE SYMMETRY GROUP AND ITS SUBGROUPS
    GAGNON, L
    WINTERNITZ, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (07): : 1493 - 1511
  • [6] LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .2. EXACT-SOLUTIONS
    GAGNON, L
    WINTERNITZ, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05): : 469 - 497
  • [7] LIE SYMMETRIES OF A GENERALIZED NON-LINEAR SCHRODINGER-EQUATION .3. REDUCTIONS TO 3RD-ORDER ORDINARY DIFFERENTIAL-EQUATIONS
    GAGNON, L
    GRAMMATICOS, B
    RAMANI, A
    WINTERNITZ, P
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (05): : 499 - 509
  • [8] GALAS F, 1988, THESIS TU BRAUNSCHWE
  • [9] GROSS J, 1983, THESIS TU BRAUNSCHWE
  • [10] Ibragimov N. Kh., 1985, TRANSFORMATION GROUP