ON THE MULTIFRACTAL ANALYSIS OF MEASURES

被引:237
作者
BROWN, G
MICHON, G
PEYRIERE, J
机构
[1] UNIV BOURGOGNE,FAC SCI MIRANDE,DEPT MATH,TOPOL LAB,CNRS,URA D0735,F-21004 DIJON,FRANCE
[2] UNIV PARIS 11,CNRS,URA D0757,F-91405 ORSAY,FRANCE
关键词
MULTIFRACTALS; HAUSDORFF DIMENSION; TRICOT DIMENSION; LARGE DEVIATIONS;
D O I
10.1007/BF01055700
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The multifractal formalism is shown to hold for a large class of measures.
引用
收藏
页码:775 / 790
页数:16
相关论文
共 26 条
[1]  
BEDFORD T, APPLICATIONS DYNAMIC
[2]  
BEDFORD T, 1987, P C TOPOLOGY MEASURE
[3]  
BESICOVITCH AS, 1934, MATH ANN, V110, P321
[4]  
Billingsley P., 1965, ERGODIC THEORY INFOR
[5]   THE ENTROPY FUNCTION FOR CHARACTERISTIC EXPONENTS [J].
BOHR, T ;
RAND, D .
PHYSICA D, 1987, 25 (1-3) :387-398
[6]   A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS [J].
CHERNOFF, H .
ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04) :493-507
[7]  
COLLET P, 1987, J STAT PHYS, V4, P7609
[8]  
EGGLESTON HG, Q J MATH OXFORD S 20, V1949, P31
[9]  
Frisch U., 1985, INT SCH PHYS E FERMI, P84
[10]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151