NONLINEAR LOCALIZED MODES IN INHOMOGENEOUS CHAINS

被引:52
作者
KIVSHAR, YS
机构
[1] Departamento de Física Teórica I, Facultad de Ciencias Físicas, Universidad Complutense
关键词
D O I
10.1016/0375-9601(91)90550-R
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the framework of a simple model of one-dimensional nonlinear lattices it is demonstrated that a nonlinear impurity mode may be treated as a bound state of an intrinsic localized mode developed by Sievers and Takeno with the impurity. Using an approach based on the soliton phenomenology the effective potential describing the interaction of the intrinsic localized mode with the impurity is calculated. It is shown that in the linear limit the intrinsic localized mode pinned by the impurity is transformed into a standard impurity mode.
引用
收藏
页码:80 / 84
页数:5
相关论文
共 24 条
[1]   INTRINSIC LOCALIZED MODES IN A MONATOMIC LATTICE WITH WEAKLY ANHARMONIC NEAREST-NEIGHBOR FORCE-CONSTANTS [J].
BICKHAM, SR ;
SIEVERS, AJ .
PHYSICAL REVIEW B, 1991, 43 (03) :2339-2346
[2]   NONLINEAR DYNAMICS OF THE FRENKEL-KONTOROVA MODEL WITH IMPURITIES [J].
BRAUN, OM ;
KIVSHAR, YS .
PHYSICAL REVIEW B, 1991, 43 (01) :1060-1073
[3]  
BURLAKOV VM, 1990, SOLID STATE COMMUN, V74, P327, DOI 10.1016/0038-1098(90)90496-X
[4]   COMPUTER-SIMULATION OF INTRINSIC LOCALIZED MODES IN ONE-DIMENSIONAL AND 2-DIMENSIONAL ANHARMONIC LATTICES [J].
BURLAKOV, VM ;
KISELEV, SA ;
PYRKOV, VN .
PHYSICAL REVIEW B, 1990, 42 (08) :4921-4927
[5]   STATIONARY VIBRATIONAL-MODES OF A POLYATOMIC CHAIN OF PARTICLES INTERACTING VIA AN EVEN ORDER POTENTIAL [J].
KISELEV, SA ;
RUPASOV, VI .
PHYSICS LETTERS A, 1990, 148 (6-7) :355-358
[6]   STATIONARY VIBRATIONAL-MODES OF A CHAIN OF PARTICLES INTERACTING VIA AN EVEN ORDER POTENTIAL [J].
KISELEV, SA .
PHYSICS LETTERS A, 1990, 148 (1-2) :95-97
[7]   DYNAMICS OF SOLITONS IN NEARLY INTEGRABLE SYSTEMS [J].
KIVSHAR, YS ;
MALOMED, BA .
REVIEWS OF MODERN PHYSICS, 1989, 61 (04) :763-915
[8]  
KIVSHAR YS, 1987, ZH EKSP TEOR FIZ, V66, P545
[9]  
KOSEVICH AM, 1975, SOV J LOW TEMP PHYS, V1, P742
[10]  
KOSEVICH AM, 1974, ZH EKSP TEOR FIZ, V40, P891