MULTIFRACTAL ANALYSIS OF CHAOTIC POWER SPECTRA

被引:8
作者
GIONA, M
PICCIRILLI, P
CIMAGALLI, V
机构
[1] Fac. of Eng., Rome Univ.
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1991年 / 24卷 / 01期
关键词
D O I
10.1088/0305-4470/24/1/042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We analyse the scaling structure of power spectra arising from chaotic dynamical systems. The observation of anomalous scaling in spectral parameters can be understood by the use of multifractal analysis in the frequency domain. This analysis provides numerical tools for evaluating different chaotic behaviour. The frequency behaviour of oscillatory chaos seems to suggest the hypothesis of phase transition in the f(alpha)-spectrum.
引用
收藏
页码:367 / 373
页数:7
相关论文
共 20 条
[1]  
BAI LH, 1989, ELEMENTARY SYMBOLIC
[2]  
Berge P., 1986, ORDER CHAOS DETERMIN
[3]   THE POWER OF CHAOS [J].
BLACHER, S ;
PERDANG, J .
PHYSICA D, 1981, 3 (03) :512-529
[4]  
Brigham E. O., 1974, FAST FOURIER TRANSFO
[5]   POWER SPECTRAL-ANALYSIS OF A DYNAMICAL SYSTEM [J].
CRUTCHFIELD, J ;
FARMER, D ;
PACKARD, N ;
SHAW, R ;
JONES, G ;
DONNELLY, RJ .
PHYSICS LETTERS A, 1980, 76 (01) :1-4
[6]  
GREENSIDE HS, 1982, PHYS REV A, V25, P3443
[7]  
GROSSMAN S, 1982, EVOLUTION ORDER CHAO, P164
[8]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[9]   THE INFINITE NUMBER OF GENERALIZED DIMENSIONS OF FRACTALS AND STRANGE ATTRACTORS [J].
HENTSCHEL, HGE ;
PROCACCIA, I .
PHYSICA D, 1983, 8 (03) :435-444
[10]  
IKEDA K, 1984, CHAOS STATISTICAL ME, P249