EFFICIENT SYMPLECTIC ALGORITHMS FOR NUMERICAL SIMULATIONS OF HAMILTONIAN FLOWS

被引:70
作者
CASETTI, L
机构
[1] UNIV FLORENCE,DIPARTIMENTO FIS,I-50125 FLORENCE,ITALY
[2] IST NAZL FIS NUCL,SEZ FIRENZE,I-50125 FLORENCE,ITALY
关键词
D O I
10.1088/0031-8949/51/1/005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A quite general approach to numerical simulations of Hamiltonian hows is presented, which is suitable to the development of efficient symplectic algorithms. Explicit schemes up to fourth order are worked out. These algorithms show a very good performance if implemented in typical molecular dynamics problems, i.e. in long-time simulations of Hamiltonian systems with a large number of degrees of freedom and steep potential functions.
引用
收藏
页码:29 / 34
页数:6
相关论文
共 16 条
  • [1] [Anonymous], 1978, MATH METHODS CLASSIC, DOI [DOI 10.1007/978-1-4757-1693-1, 10.1007/978-1-4757-1693-1]
  • [2] CLASSICAL FREEZING OF FAST ROTATIONS - A NUMERICAL TEST OF THE BOLTZMANN-JEANS CONJECTURE
    BALDAN, O
    BENETTIN, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1991, 62 (1-2) : 201 - 219
  • [3] ANALYTIC COMPUTATION OF THE STRONG STOCHASTICITY THRESHOLD IN HAMILTONIAN-DYNAMICS USING RIEMANNIAN GEOMETRY
    CASETTI, L
    PETTINI, M
    [J]. PHYSICAL REVIEW E, 1993, 48 (06): : 4320 - 4332
  • [4] CASETTI L, IN PRESS
  • [5] SYMPLECTIC INTEGRATION OF HAMILTONIAN-SYSTEMS
    CHANNELL, PJ
    SCOVEL, C
    [J]. NONLINEARITY, 1990, 3 (02) : 231 - 259
  • [6] 4TH-ORDER SYMPLECTIC INTEGRATION
    FOREST, E
    RUTH, RD
    [J]. PHYSICA D, 1990, 43 (01): : 105 - 117
  • [7] Goldstein H., 1980, CLASSICAL MECH, V2nd ed
  • [8] Landau L. D., 1960, MECHANICS
  • [9] THE ACCURACY OF SYMPLECTIC INTEGRATORS
    MCLACHLAN, RI
    ATELA, P
    [J]. NONLINEARITY, 1992, 5 (02) : 541 - 562
  • [10] CANONICAL NUMERICAL-METHODS FOR MOLECULAR-DYNAMICS SIMULATIONS
    OKUNBOR, DI
    SKEEL, RD
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 1994, 15 (01) : 72 - 79