FINITE-SIZE EFFECTS IN THE APPROXIMATING HAMILTONIAN METHOD

被引:6
作者
BRANKOV, JG [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MECH & BIOMECH,BU-1113 SOFIA,BULGARIA
来源
PHYSICA A | 1990年 / 168卷 / 03期
关键词
D O I
10.1016/0378-4371(90)90270-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Husimi-Temperley mean spherical model, in which each two particles interact with equal strength, is considered. This model is shown to be equivalent to a d-dimensional model with periodic boundary conditions and interaction potential σJσ(r), where Jσ(r) ∼ r-d-σ as r→∞, σ > 0 being a parameter, in the limit σ→0. It is found that the approximating Hamiltonian method yields singular finite-size scaling functions both in the neighbourhood of the critical point and near a first-order phase transition. A modification of this method is suggested, which allows for all the essential configurations and reproduces the exact finite-size scaling near a first-order phase transition. © 1990.
引用
收藏
页码:1035 / 1054
页数:20
相关论文
共 44 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   A GENERALIZED QUASIAVERAGE APPROACH TO THE DESCRIPTION OF THE LIMIT STATES OF THE N-VECTOR CURIE-WEISS FERROMAGNET [J].
ANGELESCU, N ;
ZAGREBNOV, VA .
JOURNAL OF STATISTICAL PHYSICS, 1985, 41 (1-2) :323-334
[3]  
ANGELESCU N, 1982, JINR E1782798 COMM
[4]  
[Anonymous], P 1970 E FERM INT SC
[5]   CERTAIN GENERAL ORDER-DISORDER MODELS IN LIMIT OF LONG-RANGE INTERACTIONS [J].
BAKER, GA .
PHYSICAL REVIEW, 1962, 126 (06) :2071-&
[6]   ONE-DIMENSIONAL ORDER-DISORDER MODEL WHICH APPROACHES A SECOND-ORDER PHASE TRANSITION [J].
BAKER, GA .
PHYSICAL REVIEW, 1961, 122 (05) :1477-&
[7]   THE SPHERICAL MODEL OF A FERROMAGNET [J].
BERLIN, TH ;
KAC, M .
PHYSICAL REVIEW, 1952, 86 (06) :821-835
[8]   FINITE SIZE EFFECTS ON PHASE-TRANSITIONS [J].
BINDER, K .
FERROELECTRICS, 1987, 73 (1-2) :43-67
[9]   FINITE-SIZE TESTS OF HYPERSCALING [J].
BINDER, K ;
NAUENBERG, M ;
PRIVMAN, V ;
YOUNG, AP .
PHYSICAL REVIEW B, 1985, 31 (03) :1498-1502
[10]   ON MODEL DYNAMICAL SYSTEMS IN STATISTICAL MECHANICS [J].
BOGOLUBOV, NN .
PHYSICA, 1966, 32 (05) :933-+