FINITE-SIZE EFFECTS IN THE APPROXIMATING HAMILTONIAN METHOD

被引:6
作者
BRANKOV, JG [1 ]
机构
[1] BULGARIAN ACAD SCI,INST MECH & BIOMECH,BU-1113 SOFIA,BULGARIA
来源
PHYSICA A | 1990年 / 168卷 / 03期
关键词
D O I
10.1016/0378-4371(90)90270-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Husimi-Temperley mean spherical model, in which each two particles interact with equal strength, is considered. This model is shown to be equivalent to a d-dimensional model with periodic boundary conditions and interaction potential σJσ(r), where Jσ(r) ∼ r-d-σ as r→∞, σ > 0 being a parameter, in the limit σ→0. It is found that the approximating Hamiltonian method yields singular finite-size scaling functions both in the neighbourhood of the critical point and near a first-order phase transition. A modification of this method is suggested, which allows for all the essential configurations and reproduces the exact finite-size scaling near a first-order phase transition. © 1990.
引用
收藏
页码:1035 / 1054
页数:20
相关论文
共 44 条
[11]  
BOGOLUBOV NN, 1972, METHOD STUDYING MODE
[12]  
BOGOLUBOV NN, 1984, RUSS MATH SURV, V39, P3
[13]  
BOGOLUBOV NN, 1981, APPROXIMATING HAMILT
[14]   SIZE SCALING FOR INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R ;
PFEUTY, P .
PHYSICAL REVIEW LETTERS, 1982, 49 (07) :478-481
[15]   LARGE-SIZE CRITICAL-BEHAVIOR OF INFINITELY COORDINATED SYSTEMS [J].
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW B, 1983, 28 (07) :3955-3967
[16]   DESCRIPTION OF LIMIT GIBBS-STATES FOR CURIE-WEISS-ISING MODEL [J].
BRANKOV, IG ;
ZAGREBNOV, VA ;
TONCHEV, NS .
THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 66 (01) :72-80
[17]   ON THE LIMIT GIBBS-STATES OF THE SPHERICAL MODEL [J].
BRANKOV, JG ;
DANCHEV, DM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (14) :4901-4913
[18]   ON THE FINITE-SIZE SCALING EQUATION FOR THE SPHERICAL MODEL [J].
BRANKOV, JG ;
TONCHEV, NS .
JOURNAL OF STATISTICAL PHYSICS, 1988, 52 (1-2) :143-159
[19]   A PROBABILISTIC VIEW ON FINITE-SIZE SCALING IN INFINITELY COORDINATED SPHERICAL-MODELS [J].
BRANKOV, JG ;
DANCHEV, DM .
PHYSICA A, 1989, 158 (03) :842-863
[20]   FINITE-SIZE SCALING FOR THE MEAN SPHERICAL MODEL WITH INVERSE POWER LAW INTERACTION [J].
BRANKOV, JG .
JOURNAL OF STATISTICAL PHYSICS, 1989, 56 (3-4) :309-330