GMRES/CR AND ARNOLDI-LANCZOS AS MATRIX APPROXIMATION-PROBLEMS

被引:71
作者
GREENBAUM, A [1 ]
TREFETHEN, LN [1 ]
机构
[1] CORNELL UNIV,DEPT COMP SCI,ITHACA,NY 14853
关键词
GMRES; CR; ARNOLDI; LANCZOS; MATRIX APPROXIMATION PROBLEM; NORMAL MATRIX;
D O I
10.1137/0915025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The GMRES and Amoldi algorithms, which reduce to the CR and Lanczos algorithms in the symmetric case, both minimize parallel-to p(A) b parallel-to over polynomials p of degree n. The difference is that p is normalized at z = 0 for GMRES and at z = infinity for Amoldi. Analogous ''ideal GMRES'' and ''ideal Amoldi'' problems are obtained if one removes b from the discussion and minimizes parallel-to p(A) parallel-to instead. Investigation of these true and ideal approximation problems gives insight into how fast GMRES converges and how the Amoldi iteration locates eigenvalues.
引用
收藏
页码:359 / 368
页数:10
相关论文
共 28 条
[2]  
Cheney E.W., 1982, INTRO APPROXIMATION, V2nd ed.
[3]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[4]  
FREUND RW, 1992, ACTA NUMERICA 1992
[5]   COMPARISON OF SPLITTINGS USED WITH THE CONJUGATE GRADIENT ALGORITHM [J].
GREENBAUM, A .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :181-194
[6]   MAX-MIN PROPERTIES OF MATRIX FACTOR NORMS [J].
GREENBAUM, A ;
GURVITS, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :348-358
[7]  
GREENBAUM A, INPRESS P IMA C IT M
[8]  
GREENBAUM A, 1992, 608 COUR I TECH REP
[9]  
GUTKNECHT MH, 1990, P COPPER MOUNTAIN C
[10]  
HILLE E, 1973, ANAL FUNCTION THEORY, V2