MAX-MIN PROPERTIES OF MATRIX FACTOR NORMS

被引:27
作者
GREENBAUM, A [1 ]
GURVITS, L [1 ]
机构
[1] SIEMENS RES CORP,PRINCETON,NJ 08540
关键词
D O I
10.1137/0915024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a set of real matrices C0, C1,..., C(k), conditions are considered under which the equality [GRAPHICS] holds. It is shown that if the matrices C(i), i = 0, 1,..., k are normal and commute with one another, then the equality holds. In particular, this implies that if C(i) = A(i) or C(i) = Ak-i, where A is a normal matrix, then the equality holds. An example is given to show that the equality may fail for noncommuting matrices, when k > 1. It is shown that the equality holds for arbitrary matrices if k = 1.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 7 条
[2]   COMPARISON OF SPLITTINGS USED WITH THE CONJUGATE GRADIENT ALGORITHM [J].
GREENBAUM, A .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :181-194
[3]   GMRES/CR AND ARNOLDI-LANCZOS AS MATRIX APPROXIMATION-PROBLEMS [J].
GREENBAUM, A ;
TREFETHEN, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :359-368
[5]  
Lawson C. L., 1961, THESIS U CALIFORNIA
[6]  
Rice JR, 1969, APPROXIMATION FUNCTI, V2
[7]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058