A ROBUST GMRES-BASED ADAPTIVE POLYNOMIAL PRECONDITIONING ALGORITHM FOR NONSYMMETRIC LINEAR-SYSTEMS

被引:37
作者
JOUBERT, W
机构
关键词
ITERATIVE METHODS; NONSYMMETRIC LINEAR SYSTEMS; GMRES; POLYNOMIAL PRECONDITIONING;
D O I
10.1137/0915029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study a hybrid generalized minimal residual (GMRES)/polynomial preconditioning algorithm for solving nonsymmetric systems of linear equations is defined. The algorithm uses the results from cycles of restarted GMRES to form an effective polynomial preconditioner, typically resulting in decreased work requirements. The algorithm has the advantage over other hybrid algorithms in that its convergence behavior is well understood: the new algorithm converges for all starting vectors if and only if restarted GMRES converges. The results of numerical experiments with the algorithm are presented.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 18 条
[1]   A HYBRID CHEBYSHEV KRYLOV SUBSPACE ALGORITHM FOR SOLVING NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
ELMAN, HC ;
SAAD, Y ;
SAYLOR, PE .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (03) :840-855
[2]   ORTHOGONAL ERROR METHODS [J].
FABER, V ;
MANTEUFFEL, TA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :170-187
[3]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD [J].
FABER, V ;
MANTEUFFEL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) :352-362
[4]   COMPARISON OF SPLITTINGS USED WITH THE CONJUGATE GRADIENT ALGORITHM [J].
GREENBAUM, A .
NUMERISCHE MATHEMATIK, 1979, 33 (02) :181-194
[5]   MAX-MIN PROPERTIES OF MATRIX FACTOR NORMS [J].
GREENBAUM, A ;
GURVITS, L .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :348-358
[6]   GMRES/CR AND ARNOLDI-LANCZOS AS MATRIX APPROXIMATION-PROBLEMS [J].
GREENBAUM, A ;
TREFETHEN, LN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (02) :359-368
[7]  
HORN RA, 1991, TOPICS MATRIX ANAL
[8]  
Householder A. S., 1964, THEORY MATRICES NUME
[9]  
JOUBERT W, 1990, CNA242 U TEX AUST CT
[10]  
JOUBERT W, IN PRESS J NUMER LIN