A ROBUST GMRES-BASED ADAPTIVE POLYNOMIAL PRECONDITIONING ALGORITHM FOR NONSYMMETRIC LINEAR-SYSTEMS

被引:37
作者
JOUBERT, W
机构
关键词
ITERATIVE METHODS; NONSYMMETRIC LINEAR SYSTEMS; GMRES; POLYNOMIAL PRECONDITIONING;
D O I
10.1137/0915029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study a hybrid generalized minimal residual (GMRES)/polynomial preconditioning algorithm for solving nonsymmetric systems of linear equations is defined. The algorithm uses the results from cycles of restarted GMRES to form an effective polynomial preconditioner, typically resulting in decreased work requirements. The algorithm has the advantage over other hybrid algorithms in that its convergence behavior is well understood: the new algorithm converges for all starting vectors if and only if restarted GMRES converges. The results of numerical experiments with the algorithm are presented.
引用
收藏
页码:427 / 439
页数:13
相关论文
共 18 条
[11]   PARALLELIZABLE RESTARTED ITERATIVE METHODS FOR NONSYMMETRIC LINEAR-SYSTEMS .1. THEORY [J].
JOUBERT, WD ;
CAREY, GF .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1992, 44 (1-4) :243-267
[12]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE SIMPLIFICATION OF GENERALIZED CONJUGATE-GRADIENT ALGORITHMS [J].
JOUBERT, WD ;
YOUNG, DM .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 :449-485
[13]  
Lasdon L. S., 1978, ACM Transactions on Mathematical Software, V4, P34, DOI 10.1145/355769.355773
[14]  
LASDON LS, 1989, UNPUB GRG2 USERS GUI
[15]  
Manteuffel T. A., 1978, NUMER MATH, V31, P187
[16]   A HYBRID GMRES ALGORITHM FOR NONSYMMETRIC LINEAR-SYSTEMS [J].
NACHTIGAL, NM ;
REICHEL, L ;
TREFETHEN, LN .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1992, 13 (03) :796-825
[17]   YET ANOTHER POLYNOMIAL PRECONDITIONER FOR THE CONJUGATE-GRADIENT ALGORITHM [J].
OLEARY, DP .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1991, 154 :377-388
[18]  
SAAD Y, 1986, SIAM J SCI STAT COMP, V7, P856, DOI 10.1137/0907058