PARALLELIZABLE RESTARTED ITERATIVE METHODS FOR NONSYMMETRIC LINEAR-SYSTEMS .1. THEORY

被引:36
作者
JOUBERT, WD
CAREY, GF
机构
[1] The University of Texas, Austin
基金
美国国家科学基金会;
关键词
GMRES; ITERATIVE METHOD; LINEAR EQUATIONS; NONSYMMETRIC; PARALLEL; CACHE; ORTHOMIN;
D O I
10.1080/00207169208804107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large sparse nonsymmetric problems of the form Au = b are frequently solved using restarted conjugate gradient-type algorithms such as the popular GCR and GMRES algorithms. In this study we define a new class of algorithms which generate the same iterates as the standard GMRES algorithm but require as little as half of the computational expense. This performance improvement is obtained by using short economical three-term recurrences to replace the long recurrence used by GMRES. The new algorithms are shown to have good numerical properties in typical cases, and the new algorithms may be easily modified to be as numerically safe as standard GMRES. Numerical experiments with these algorithms are given in Part II, in which we demonstrate the improved performance of the new schemes on different computer architectures.
引用
收藏
页码:243 / 267
页数:25
相关论文
共 35 条
[1]   A TAXONOMY FOR CONJUGATE-GRADIENT METHODS [J].
ASHBY, SF ;
MANTEUFFEL, TA ;
SAYLOR, PE .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1990, 27 (06) :1542-1568
[2]  
BAI Z, 1991, 9103 U KENT DEP MATH
[3]  
BARRAGY E, 1989, INT J NUMER METH ENG, V26, P2367
[4]  
BUSINGER PA, 1967, TNN71 U TEX COMP CTR
[5]   BASIS FUNCTION SELECTION AND PRECONDITIONING HIGH DEGREE FINITE-ELEMENT AND SPECTRAL METHODS [J].
CAREY, GF ;
BARRAGY, E .
BIT, 1989, 29 (04) :794-804
[6]  
CHRONOPOULOS A, 1986, UIUCDCSR861267 U ILL
[7]  
CHRONOPOULOS A, 1990, TR9015 U MINN DEP CO
[8]  
Davis P. J., 1963, INTERPOLATION APPROX
[9]   VARIATIONAL ITERATIVE METHODS FOR NONSYMMETRIC SYSTEMS OF LINEAR-EQUATIONS [J].
EISENSTAT, SC ;
ELMAN, HC ;
SCHULTZ, MH .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :345-357
[10]   ORTHOGONAL ERROR METHODS [J].
FABER, V ;
MANTEUFFEL, TA .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (01) :170-187