PARALLELIZABLE RESTARTED ITERATIVE METHODS FOR NONSYMMETRIC LINEAR-SYSTEMS .1. THEORY

被引:36
作者
JOUBERT, WD
CAREY, GF
机构
[1] The University of Texas, Austin
基金
美国国家科学基金会;
关键词
GMRES; ITERATIVE METHOD; LINEAR EQUATIONS; NONSYMMETRIC; PARALLEL; CACHE; ORTHOMIN;
D O I
10.1080/00207169208804107
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Large sparse nonsymmetric problems of the form Au = b are frequently solved using restarted conjugate gradient-type algorithms such as the popular GCR and GMRES algorithms. In this study we define a new class of algorithms which generate the same iterates as the standard GMRES algorithm but require as little as half of the computational expense. This performance improvement is obtained by using short economical three-term recurrences to replace the long recurrence used by GMRES. The new algorithms are shown to have good numerical properties in typical cases, and the new algorithms may be easily modified to be as numerically safe as standard GMRES. Numerical experiments with these algorithms are given in Part II, in which we demonstrate the improved performance of the new schemes on different computer architectures.
引用
收藏
页码:243 / 267
页数:25
相关论文
共 35 条
[11]   NECESSARY AND SUFFICIENT CONDITIONS FOR THE EXISTENCE OF A CONJUGATE-GRADIENT METHOD [J].
FABER, V ;
MANTEUFFEL, T .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1984, 21 (02) :352-362
[12]  
GAUTSCHI W, 1979, MATH COMPUT, V33, P343, DOI 10.1090/S0025-5718-1979-0514830-6
[13]  
GAUTSCHI W, 1972, MATH COMPUT, V26, P923, DOI 10.1090/S0025-5718-1972-0313558-9
[14]  
GAUTSCHI W, 1984, MAA STUDIES NUMERICA, P140
[15]  
Golub G.H., 1996, MATH GAZ, VThird
[16]  
Grcar J. F., 1989, SAND898691 SAND NAT
[17]  
HAGEMAN LA, 1981, APPLIED ITERATIVE ME
[18]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[19]  
Householder A. S., 1964, THEORY MATRICES NUME
[20]  
JOUBERT W, 1990, CNA242 U TEX AUST CT