THE OPTIMIZATION OF PROTEIN-SOLVENT INTERACTIONS - THERMOSTABILITY AND THE ROLE OF HYDROPHOBIC AND ELECTROSTATIC INTERACTIONS

被引:144
作者
SPASSOV, VZ
KARSHIKOFF, AD
LADENSTEIN, R
机构
[1] KAROLINSKA INST, NOVUM, CTR STRUCT BIOCHEM, S-14157 HUDDINGE, SWEDEN
[2] ACAD MED SOFIA, INST BIOPHYS, BU-1113 SOFIA, BULGARIA
关键词
ELECTROSTATIC INTERACTIONS; HYDROPHOBIC INTERACTIONS; SOLVENT ACCESSIBILITY; THERMOSTABILITY;
D O I
10.1002/pro.5560040809
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Protein-solvent interactions were analyzed using an optimization parameter based on the ratio of the solvent-accessible area in the native and the unfolded protein structure. The calculations were performed for a set of 183 nonhomologous proteins with known three-dimensional structure available in the Protein Data Bank. The dependence of the total solvent-accessible surface area on the protein molecular mass was analyzed. It was shown that there is no difference between the monomeric and oligomeric proteins with respect to the solvent-accessible area. The results also suggested that for proteins with molecular mass above some critical mass, which is about 28 kDa, a formation of domain structure or subunit aggregation into oligomers is preferred rather than a further enlargement of a single domain structure. An analysis of the optimization of both protein-solvent and charge-charge interactions was performed for 14 proteins from thermophilic organisms. The comparison of the optimization parameters calculated for proteins from thermophiles and mesophiles showed that the former are generally characterized by a high degree of optimization of the hydrophobic interactions or, in cases where the optimization of the hydrophobic interactions is not sufficiently high, by highly optimized charge-charge interactions.
引用
收藏
页码:1516 / 1527
页数:12
相关论文
共 39 条
[1]   ENZYMES AND PROTEINS FROM ORGANISMS THAT GROW NEAR AND ABOVE 100-DEGREES-C [J].
ADAMS, MWW .
ANNUAL REVIEW OF MICROBIOLOGY, 1993, 47 :627-658
[2]   INDOLE-3-GLYCEROL-PHOSPHATE SYNTHASE FROM SULFOLOBUS-SOLFATARICUS AS A MODEL FOR STUDYING THERMOSTABLE TIM-BARREL ENZYMES [J].
ANDREOTTI, G ;
TUTINO, ML ;
SANNIA, G ;
MARINO, G ;
CUBELLIS, MV .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1994, 1208 (02) :310-315
[3]   PRINCIPLES THAT GOVERN FOLDING OF PROTEIN CHAINS [J].
ANFINSEN, CB .
SCIENCE, 1973, 181 (4096) :223-230
[4]   THERMAL-STABILITY AND PROTEIN-STRUCTURE [J].
ARGOS, P ;
ROSSMANN, MG ;
GRAU, UM ;
ZUBER, H ;
FRANK, G ;
TRATSCHIN, JD .
BIOCHEMISTRY, 1979, 18 (25) :5698-5703
[5]   PROTEIN DATA BANK - COMPUTER-BASED ARCHIVAL FILE FOR MACROMOLECULAR STRUCTURES [J].
BERNSTEIN, FC ;
KOETZLE, TF ;
WILLIAMS, GJB ;
MEYER, EF ;
BRICE, MD ;
RODGERS, JR ;
KENNARD, O ;
SHIMANOUCHI, T ;
TASUMI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1977, 112 (03) :535-542
[6]  
BOBERG J, 1995, IN PRESS PROTEIN ENG
[7]   STRUCTURE OF A HYPERTHERMOPHILIC TUNGSTOPTERIN ENZYME, ALDEHYDE FERREDOXIN OXIDOREDUCTASE [J].
CHAN, MK ;
MUKUND, S ;
KLETZIN, A ;
ADAMS, MWW ;
REES, DC .
SCIENCE, 1995, 267 (5203) :1463-1469
[8]   STRUCTURAL INVARIANTS IN PROTEIN FOLDING [J].
CHOTHIA, C .
NATURE, 1975, 254 (5498) :304-308
[9]   HYDROPHOBIC BONDING AND ACCESSIBLE SURFACE-AREA IN PROTEINS [J].
CHOTHIA, C .
NATURE, 1974, 248 (5446) :338-339
[10]   NATURE OF ACCESSIBLE AND BURIED SURFACES IN PROTEINS [J].
CHOTHIA, C .
JOURNAL OF MOLECULAR BIOLOGY, 1976, 105 (01) :1-14