DYNAMICS OF SPIRAL RINGS IN THE 3-DIMENSIONAL GINZBURG-LANDAU EQUATION

被引:9
作者
FRISCH, T
RICA, S
机构
[1] Institut Non Linéaire de Nice, F-06034 Nice CEDEX, Parc Valrose
来源
PHYSICA D | 1992年 / 61卷 / 1-4期
关键词
D O I
10.1016/0167-2789(92)90158-J
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we show that the spiral rings of the 3D Ginzburg-Landau equation shrink out and disappear in finite time. In contrast with the 2D case in which the interaction between two spirals of opposite charge is exponential. We show analytically and numerically that the spiral rings collapse with a power law due to the continuity of the defect line.
引用
收藏
页码:155 / 158
页数:4
相关论文
共 15 条
[1]   INTERACTION OF SPIRALS IN OSCILLATORY MEDIA [J].
ARANSON, IS ;
KRAMER, L ;
WEBER, A .
PHYSICAL REVIEW LETTERS, 1991, 67 (03) :404-404
[2]   ON THE INTERACTION OF SPIRAL WAVES IN NONEQUILIBRIUM MEDIA [J].
ARANSON, IS ;
KRAMER, L ;
WEBER, A .
PHYSICA D, 1991, 53 (2-4) :376-384
[3]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[4]  
COULLET P, COMMUNICATION
[5]   DYNAMICS OF PHASE SINGULARITIES IN 2-DIMENSIONAL OSCILLATING-SYSTEMS [J].
ELPHICK, C ;
MERON, E .
PHYSICA D, 1991, 53 (2-4) :385-399
[6]  
FRISCH T, UNPUB PHYS REV LETT
[7]   SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS [J].
HAGAN, PS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :762-786
[8]   ON INTERACTION OF SPIRAL WAVES [J].
PISMEN, LM ;
NEPOMNYASHCHY, AA .
PHYSICA D, 1992, 54 (03) :183-193
[9]   LONG-TIME BEHAVIOR OF SOLUTIONS OF NONLINEAR CLASSICAL FIELD-EQUATIONS - THE EXAMPLE OF NLS DEFOCUSING [J].
POMEAU, Y .
PHYSICA D-NONLINEAR PHENOMENA, 1992, 61 (1-4) :227-239
[10]  
POMEAU Y, 1992, PHYSICA D, V61