DYNAMICS OF PHASE SINGULARITIES IN 2-DIMENSIONAL OSCILLATING-SYSTEMS

被引:24
作者
ELPHICK, C [1 ]
MERON, E [1 ]
机构
[1] WEIZMANN INST SCI,DEPT CHEM PHYS,IL-76100 REHOVOT,ISRAEL
来源
PHYSICA D | 1991年 / 53卷 / 2-4期
关键词
D O I
10.1016/0167-2789(91)90070-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the dynamics of vortices that arise in two-dimensional nonequilibrium systems above a Hopf bifurcation to uniform, temporal oscillations. Evolution equations for the vortex positions and for a global phase field are derived and used to study vortex interactions. We suggest that the interactions need not be purely attractive or repulsive; bound vortex pairs can exist, which either precess around fixed points in the plane, or drift in directions perpendicular to the inter-vortex axes.
引用
收藏
页码:385 / 399
页数:15
相关论文
共 21 条
[1]   ON THE INTERACTION OF SPIRAL WAVES IN NONEQUILIBRIUM MEDIA [J].
ARANSON, IS ;
KRAMER, L ;
WEBER, A .
PHYSICA D, 1991, 53 (2-4) :376-384
[2]   DISINTEGRATION OF WAVE TRAINS ON DEEP WATER .1. THEORY [J].
BENJAMIN, TB ;
FEIR, JE .
JOURNAL OF FLUID MECHANICS, 1967, 27 :417-&
[3]  
BODENSCHATZ E, 1989, STRUCTURE DYNAMICS S
[4]   TRANSITION TO TURBULENCE IN A DISCRETE GINZBURG-LANDAU MODEL [J].
BOHR, T ;
PEDERSEN, AW ;
JENSEN, MH .
PHYSICAL REVIEW A, 1990, 42 (06) :3626-3629
[5]   DEFECT-MEDIATED TURBULENCE [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICAL REVIEW LETTERS, 1989, 62 (14) :1619-1622
[6]   A FORM OF TURBULENCE ASSOCIATED WITH DEFECTS [J].
COULLET, P ;
GIL, L ;
LEGA, J .
PHYSICA D, 1989, 37 (1-3) :91-103
[7]   CONVECTION PATTERNS IN LARGE ASPECT RATIO SYSTEMS [J].
CROSS, MC ;
NEWELL, AC .
PHYSICA D-NONLINEAR PHENOMENA, 1984, 10 (03) :299-328
[8]   SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS [J].
HAGAN, PS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :762-786
[9]  
HOWARD LN, 1977, STUD APPL MATH, V56, P95
[10]  
Kuramoto Y., 1984, CHEM OSCILLATIONS WA