QUANTUM GROUPS, COHERENT STATES, SQUEEZING AND LATTICE QUANTUM-MECHANICS

被引:55
作者
CELEGHINI, E
DEMARTINO, S
DESIENA, S
RASETTI, M
VITIELLO, G
机构
[1] IST NAZL FIS NUCL, I-50125 FLORENCE, ITALY
[2] UNIV SALERNO, DIPARTIMENTO FIS, I-84100 SALERNO, ITALY
[3] IST NAZL FIS NUCL, I-84100 SALERNO, ITALY
[4] POLITECN TORINO, DIPARTIMENTO FIS, I-10129 TURIN, ITALY
[5] POLITECN TORINO, IST NAZL FIS NUCL, I-10129 TURIN, ITALY
关键词
D O I
10.1006/aphy.1995.1055
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By resorting to the Fock-Bargmann representation, we incorporate the quantum Weyl-Heisenberg algebra, q-WH, into the theory of entire analytic functions. The q-WH algebra operators are realized in terms of finite difference operators in the z plane. In order to exhibit the relevance of our study, several applications to different cases of physical interest are discussed; squeezed states and the relation between coherent states and theta functions on one side, and lattice quantum mechanics and Bloch functions on the other, are shown to find a deeper mathematical understanding in terms of q-WH. The role played by the finite difference operators and the relevance of the lattice structure in the completeness of the coherent states system suggest that the quantization of the WH algebra is an essential tool in the physics of discretized (periodic) systems. (C) 1995 Academic Press, Inc.
引用
收藏
页码:50 / 67
页数:18
相关论文
共 33 条
[1]  
Abramowitz M.., 1972, HDB MATH FUNCTIONS
[3]  
Bargmann V., 1971, REP MATH PHYS, V2, P221, DOI 10.1016/0034-4877(71)90006-1
[4]  
Bellman R., 1961, BRIEF INTRO THETA FU
[5]   AN EXTENSION OF THE BOREL-WEIL CONSTRUCTION TO THE QUANTUM GROUP-U Q(N) [J].
BIEDENHARN, LC ;
LOHE, MA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 146 (03) :483-504
[6]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[7]   PHASE AND ANGLE VARIABLES IN QUANTUM MECHANICS [J].
CARRUTHERS, P ;
NIETO, MM .
REVIEWS OF MODERN PHYSICS, 1968, 40 (02) :411-+
[8]  
Celeghini E., 1993, Modern Physics Letters B, V7, P1321, DOI 10.1142/S0217984993001363
[9]   SQUEEZING AND QUANTUM GROUPS [J].
CELEGHINI, E ;
RASETTI, M ;
VITIELLO, G .
PHYSICAL REVIEW LETTERS, 1991, 66 (16) :2056-2059
[10]   THE QUANTUM HEISENBERG-GROUP H(1)Q [J].
CELEGHINI, E ;
GIACHETTI, R ;
SORACE, E ;
TARLINI, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1991, 32 (05) :1155-1158