TOXICATION OF MPTP (1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE) AND ANALOGS BY MONOAMINE-OXIDASE - A STRUCTURE-REACTIVITY RELATIONSHIP STUDY

被引:26
作者
MARET, G
ELTAYAR, N
CARRUPT, PA
TESTA, B
JENNER, P
BAIRD, M
机构
[1] UNIV LAUSANNE,ECOLE PHARM,INST CHIM THERAPEUT,PL CHATEAU 3,CH-1005 LAUSANNE,SWITZERLAND
[2] KINGS COLL,DEPT PHARMACOL,LONDON SW3 6LX,ENGLAND
[3] UNIV NEWCASTLE UPON TYNE,DEPT ORGAN CHEM,NEWCASTLE TYNE NE1 7RU,TYNE & WEAR,ENGLAND
关键词
D O I
10.1016/0006-2952(90)90316-D
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) elicits motor deficits similar to those observed in Parkinson's disease. Before exerting its neurotoxic action, MPTP must be activated by brain monoamine oxidase (MAO) to the neurotoxic metabolite MPP+ (1-methyl-4-phenylpyridinium). MPTP derivatives differ in their reactivity as MAO substrates and in their neurotoxicity. A structure-reactivity relationship study based on literature data was undertaken in order to determine the key features in the structure of MPTP and analogs that are responsible for the reactivity towards MAO. Thirty-three MPTP derivatives (including MPTP itself) were included in the study. To explain the reactivity towards MAO of the 33 MPTP analogs, different statistical methods (principal component analysis, multiple linear regression analysis) as well as the CoMFA (Comparative Molecular Field Analysis) approach, a new tool in structure-activity correlations, were used. Linear regression analysis failed to yield any predictive model, but suggested some trends. In contrast, the CoMFA approach was successful in correlating structural features and MAO reactivity. Coefficient contour maps showed where differences in the steric field (van der Waals' interactions) are most highly associated with differences in MAO reactivity. Several positive (in the ortho- and meta-position of the phenyl group) and negative (in the para-position of the phenyl group; beyond the N-methyl group) interaction regions were identified. Some structural features of the MAO active site could be postulated. First, the N-methyl group has the ideal size and elicits ideal interactions within the MAO active pocket, while smaller or larger groups are less favorable; second, para-substituent on the phenyl ring produce steric hindrances and are unfavorable to reactivity; third, ortho- and meta-substituents may have stabilizing interactions within the active pocket and are favorable to the reactivity. Moreover the model derived by CoMFA allowed us to make succesful predictions of reactivity towards MAO for several additional tetrahydropyridines. © 1990.
引用
收藏
页码:783 / &
相关论文
共 62 条
[61]   EVALUATION OF THE BIOLOGICAL-ACTIVITY OF SEVERAL ANALOGS OF THE DOPAMINERGIC NEUROTOXIN 1-METHYL-4-PHENYL-1,2,3,6-TETRAHYDROPYRIDINE [J].
YOUNGSTER, SK ;
SONSALLA, PK ;
HEIKKILA, RE .
JOURNAL OF NEUROCHEMISTRY, 1987, 48 (03) :929-934
[62]   CHARACTERIZATION OF THE NEUROTOXIC POTENTIAL OF META-METHOXY-MPTP AND THE USE OF ITS N-ETHYL ANALOG AS A MEANS OF AVOIDING EXPOSURE TO A POSSIBLE PARKINSONISM-CAUSING AGENT [J].
ZIMMERMAN, DM ;
CANTRELL, BE ;
REEL, JK ;
HEMRICKLUECKE, SK ;
FULLER, RW .
JOURNAL OF MEDICINAL CHEMISTRY, 1986, 29 (08) :1517-1520