DIMENSIONAL CHANGES IN HIGHLY ORIENTED PYROLYTIC-GRAPHITE DUE TO ELECTRON-IRRADIATION

被引:64
作者
KOIKE, J [1 ]
PEDRAZA, DF [1 ]
机构
[1] OAK RIDGE NATL LAB,OAK RIDGE,TN 37831
基金
美国能源部;
关键词
D O I
10.1557/JMR.1994.1899
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
One of the main problems found in the nuclear applications of graphite is its dimensional instability under irradiation, involving both swelling and shape changes. In order to understand better the mechanisms that give rise to these changes, highly oriented pyrolytic graphite was irradiated with 300 keV electrons at temperatures between 25 and 657-degrees-C in a transmission electron microscope (TEM). Microscopic dimensional changes and structural disordering were studied in directions parallel and perpendicular to the graphite basal plane. Changes in the specimen length were investigated by measuring the distance between two markers on the specimen surface in TEM images. Changes in the lattice parameter and the crystalline structure were studied by a TEM diffraction technique. In agreement with reported results, large increases in the specimen length and the lattice parameter were observed along the c-axis direction, whereas a relatively small decrease was observed along the a-axis. In irradiation studies conducted at room temperature, it was found that the dimensional change saturates at high dose, at an elongation along the c-axis direction of about 300%. High resolution microscopy revealed that the microstructure had become nanocrystalline. Electron energy loss spectroscopy results showed that the volume change was recovered at this stage. These observations are discussed in terms of point defect evolution and its effects on the microstructure of irradiated graphite.
引用
收藏
页码:1899 / 1907
页数:9
相关论文
共 22 条
[1]   TOPOGRAPHICAL CHANGES INDUCED BY HIGH-DOSE CARBON-BOMBARDMENT OF GRAPHITE [J].
ANNIS, BK ;
PEDRAZA, DF ;
WITHROW, SP .
JOURNAL OF MATERIALS RESEARCH, 1993, 8 (10) :2587-2599
[2]  
[Anonymous], 1965, RAD DAMAGE GRAPHITE
[3]   STORED ENERGY IN GRAPHITE OF POWER-PRODUCING REACTORS [J].
BELL, JC ;
GREENOUGH, GB ;
REYNOLDS, WN ;
SIMMONS, JHW ;
COTTRELL, AH ;
BRIDGE, H .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1962, 254 (1043) :361-&
[4]  
Dresselhaus M. S., 1992, ION IMPLANTATION DIA
[5]   RAMAN-SCATTERING FROM ION-IMPLANTED GRAPHITE [J].
ELMAN, BS ;
DRESSELHAUS, MS ;
DRESSELHAUS, G ;
MABY, EW ;
MAZUREK, H .
PHYSICAL REVIEW B, 1981, 24 (02) :1027-1034
[6]   STRUCTURE OF ION-IMPLANTED GRAPHITE FIBERS [J].
ENDO, M ;
SALAMANCARIBA, L ;
DRESSELHAUS, G ;
GIBSON, JM .
JOURNAL DE CHIMIE PHYSIQUE ET DE PHYSICO-CHIMIE BIOLOGIQUE, 1984, 81 (11-1) :803-808
[7]   HIGH-RESOLUTION ELECTRON-MICROSCOPY OF GRAPHITE DEFECT STRUCTURES AFTER KEV HYDROGEN-ION BOMBARDMENT [J].
GOTOH, Y ;
SHIMIZU, H ;
MURAKAMI, H .
JOURNAL OF NUCLEAR MATERIALS, 1989, 162 :851-855
[8]  
HEMBREE D, 1993, MATER RES SOC S P, V279, P15
[9]   ON THE AMORPHIZATION OF GRAPHITE UNDER NEUTRON-IRRADIATION [J].
KELLY, BT .
JOURNAL OF NUCLEAR MATERIALS, 1990, 172 (02) :237-238
[10]  
KELLY BT, 1981, PHYSICS GRAPHITE