SOLUTION DIFFERENTIABILITY FOR VARIATIONAL-INEQUALITIES

被引:21
作者
KYPARISIS, J
机构
[1] Department of Decision Sciences and Information Systems, College of Business Administration, Florida International University, Miami, 33199, FL
关键词
nonlinear complementarity problems; nonlinear programming; sensitivity analysis; solution differentiability; Variational inequalities;
D O I
10.1007/BF01582260
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we study solution differentiability properties for variational inequalities. We characterize Fréchet differentiability of perturbed solutions to parametric variational inequality problems defined on polyhedral sets. Our result extends the recent result of Pang and it directly specializes to nonlinear complementarity problems, variational inequality problems defined on perturbed sets and to nonlinear programming problems. © 1990 The Mathematical Programming Society, Inc.
引用
收藏
页码:285 / 301
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 2854 U WISC MATH RES
[2]   SENSITIVITY ANALYSIS IN VARIATIONAL-INEQUALITIES [J].
DAFERMOS, S .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (03) :421-434
[3]   ON THE REGULARITY OF THE KUHN-TUCKER CURVE [J].
DONTCHEV, AL ;
JONGEN, HT .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1986, 24 (02) :169-176
[4]  
Fiacco A. V., 1983, INTRO SENSITIVITY ST
[5]   SENSITIVITY ANALYSIS FOR NONLINEAR-PROGRAMMING USING PENALTY METHODS [J].
FIACCO, AV .
MATHEMATICAL PROGRAMMING, 1976, 10 (03) :287-311
[6]  
Fiacco AV, 1990, NONLINEAR PROGRAMMIN
[7]   DIRECTIONAL BEHAVIOR OF OPTIMAL-SOLUTIONS IN NONLINEAR MATHEMATICAL-PROGRAMMING [J].
GAUVIN, J ;
JANIN, R .
MATHEMATICS OF OPERATIONS RESEARCH, 1988, 13 (04) :629-649
[8]   FINITE-DIMENSIONAL VARIATIONAL INEQUALITY AND NONLINEAR COMPLEMENTARITY-PROBLEMS - A SURVEY OF THEORY, ALGORITHMS AND APPLICATIONS [J].
HARKER, PT ;
PANG, JS .
MATHEMATICAL PROGRAMMING, 1990, 48 (02) :161-220
[9]  
Kojima, 1980, ANAL COMPUTATION FIX, P93, DOI DOI 10.1016/B978-0-12-590240-3.50009-4