ON THE REGULARITY OF THE KUHN-TUCKER CURVE

被引:9
作者
DONTCHEV, AL [1 ]
JONGEN, HT [1 ]
机构
[1] TWENTE UNIV TECHNOL,DEPT APPL MATH,ENSCHEDE,NETHERLANDS
关键词
D O I
10.1137/0324009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider twice continuously differentiable finite dimensional optimization problems, depending on a real parameter. Besides a discussion of (local) Lipschitz continuity of the Kuhn-Tucker curve, we present conditions under which the Kuhn-Tucker curve is piecewise continuously differentiable. Throughout the paper we assume the linear independence of the gradients of the binding constraint functions. We use Kojima's concept of strongly stable Kuhn-Tucker points and present a new equivalent formulation of this concept.
引用
收藏
页码:169 / 176
页数:8
相关论文
共 13 条
[1]   SENSITIVITY ANALYSIS FOR NONLINEAR-PROGRAMMING USING PENALTY METHODS [J].
FIACCO, AV .
MATHEMATICAL PROGRAMMING, 1976, 10 (03) :287-311
[2]   LOCAL DUALITY OF NONLINEAR PROGRAMS [J].
FUJIWARA, O ;
HAN, SP ;
MANGASARIAN, OL .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (01) :162-169
[3]   LIPSCHITZ CONTINUITY FOR CONSTRAINED PROCESSES [J].
HAGER, WW .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (03) :321-338
[4]   CONJUGATE CONE CHARACTERIZATION OF POSITIVE DEFINITE AND SEMIDEFINITE MATRICES [J].
HAN, SP ;
MANGASARIAN, OL .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 56 (JAN) :89-103
[5]  
HAN SP, UNPUB LINEAR ALGEBRA
[6]  
JONGEN HT, 1983, METHODEN VERFAHREN M, V29
[7]  
JONGEN HT, UNPUB J OPTIM THEORY
[8]  
JONGEN HT, 1983, 433 TWENT U TECHN ME
[9]  
KOJIMA M, 1980, 4 TOK I TECHN DEP MA
[10]  
KOJIMA M, 1980, ANAL COMPUTATION FIX