A TREE-BASED SCALING EXPONENT FOR RANDOM CLUSTER-MODELS

被引:1
作者
ALDOUS, D
LARGET, B
机构
[1] Dept. of Stat., California Univ., Berkeley, CA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 17期
关键词
D O I
10.1088/0305-4470/25/17/009
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For models of random trees in the hypercubic lattice, or more general random clusters to which tree structure may be added, we introduce a novel scaling exponent. For the particular model of uniform random spanning trees in two and three dimensions, its value is estimated by Monte Carlo simulation.
引用
收藏
页码:L1065 / L1069
页数:5
相关论文
共 18 条
[11]   STATISTICS OF LATTICE ANIMALS [J].
MADRAS, N ;
SOTEROS, CE ;
WHITTINGTON, SG .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (24) :4617-4635
[12]   CHOOSING A SPANNING TREE FOR THE INTEGER LATTICE UNIFORMLY [J].
PEMANTLE, R .
ANNALS OF PROBABILITY, 1991, 19 (04) :1559-1574
[13]  
Privman V., 1989, DIRECTED MODELS POLY
[14]   MONTE-CARLO STUDIES OF 2-DIMENSIONAL PERCOLATION [J].
STOLL, E ;
DOMB, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (03) :L57-L61
[15]  
Vicsek T., 1989, FRACTAL GROWTH PHENO
[16]   VALENCES OF SITES IN BOND PERCOLATION [J].
WHITTINGTON, SG ;
MIDDLEMISS, KM ;
GAUNT, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (09) :2415-2429
[17]   DIFFUSION-LIMITED AGGREGATION, A KINETIC CRITICAL PHENOMENON [J].
WITTEN, TA ;
SANDER, LM .
PHYSICAL REVIEW LETTERS, 1981, 47 (19) :1400-1403
[18]  
[No title captured]