A SIMPLE GEOMETRICAL CONSTRUCTION OF DEFORMATION QUANTIZATION

被引:526
作者
FEDOSOV, BV [1 ]
机构
[1] MOSCOW INST PHYS & TECHNOL,MOSCOW,RUSSIA
关键词
D O I
10.4310/jdg/1214455536
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A construction, providing a canonical star-product associated with any symplectic connection on symplectic manifold, is considered. An action of symplectomorphisms by automorphisms of star-algebra is introduced, as well as a trace construction. Generalizations for regular Poisson manifolds and for coefficients in the bundle Hom(E, E) are given.
引用
收藏
页码:213 / 238
页数:26
相关论文
共 8 条
[1]   DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :61-110
[2]   EXISTENCE OF STAR-PRODUCTS AND OF FORMAL DEFORMATIONS OF THE POISSON LIE-ALGEBRA OF ARBITRARY SYMPLECTIC-MANIFOLDS [J].
DEWILDE, M ;
LECOMTE, PBA .
LETTERS IN MATHEMATICAL PHYSICS, 1983, 7 (06) :487-496
[3]  
Fedosov B. V., 1986, Soviet Physics - Doklady, V31, P877
[4]  
Fedosov B. V., 1985, SOME TOPICS MODERN M, Vvi, P129
[5]  
FEDOSOV BV, 1989, SOV PHYS DOKL, V34, P318
[6]  
MASMOUDI A, 1992, THESIS U METZ
[7]  
MELOTTE D, 1988, DEFORMATION THEORY C, V247, P961
[8]   WEYL MANIFOLDS AND DEFORMATION QUANTIZATION [J].
OMORI, H ;
MAEDA, Y ;
YOSHIOKA, A .
ADVANCES IN MATHEMATICS, 1991, 85 (02) :224-255