EXPRESSION OF INDUCIBLE STRESS PROTEIN-70 IN RAT-HEART MYOGENIC CELLS CONFERS PROTECTION AGAINST SIMULATED ISCHEMIA-INDUCED INJURY

被引:279
作者
MESTRIL, R
CHI, SH
SAYEN, MR
OREILLY, K
DILLMANN, WH
机构
[1] Department of Medicine, Div. of Endocrinology and Metabolism, Univ. of California at San Diego, San Diego
[2] Univ. of California at San Diego, San Diego, CA 92013
关键词
HEAT SHOCK PROTEINS; THERMOTOLERANCE; MYOCARDIAL ISCHEMIA; HYPOXIA;
D O I
10.1172/JCI117030
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Myocardial ischemia markedly increases the expression of several members of the stress/heat shock protein (HSP) family, especially the inducible HSP70 isoforms. Increased expression of HSP70 has been shown to exert a protective effect against a lethal heat shock. We have examined the possibility of using this resistance to a lethal heat shock as a protective effect against an ischemic-like stress in vitro using a rat embryonic heart-derived cell line H9c2(2-1). Myogenic cells in which the heat shock proteins have been induced by a previous heat shock are found to become resistant to a subsequent simulated ischemic stress. In addition, to address the question of how much does the presence of the HSP70 contribute to this protective effect, we have generated stably transfected cell lines overexpressing the human-inducible HSP70. Embryonal rat heart-derived H9c2(2-1) cells were used for this purpose. This stably transfected cell line was found to be significantly more resistant to an ischemic-like stress than control myogenic cells only expressing the selectable marker (neomycin) or the parental cell line H9c2(2-1). This finding implicates the inducible HSP70 protein as playing a major role in protecting cardiac cells against ischemic injury.
引用
收藏
页码:759 / 767
页数:9
相关论文
共 31 条
[1]   THE HUMAN HEAT-SHOCK PROTEIN HSP70 INTERACTS WITH HSF, THE TRANSCRIPTION FACTOR THAT REGULATES HEAT-SHOCK GENE-EXPRESSION [J].
ABRAVAYA, K ;
MYERS, MP ;
MURPHY, SP ;
MORIMOTO, RI .
GENES & DEVELOPMENT, 1992, 6 (07) :1153-1164
[2]   CONSTITUTIVE EXPRESSION OF HEAT-SHOCK PROTEIN-70 IN MAMMALIAN-CELLS CONFERS THERMORESISTANCE [J].
ANGELIDIS, CE ;
LAZARIDIS, I ;
PAGOULATOS, GN .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1991, 199 (01) :35-39
[3]   HEAT-SHOCK GENE-REGULATION BY NASCENT POLYPEPTIDES AND DENATURED PROTEINS - HSP70 AS A POTENTIAL AUTOREGULATORY FACTOR [J].
BALER, R ;
WELCH, WJ ;
VOELLMY, R .
JOURNAL OF CELL BIOLOGY, 1992, 117 (06) :1151-1159
[4]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[5]   70K HEAT-SHOCK RELATED PROTEINS STIMULATE PROTEIN TRANSLOCATION INTO MICROSOMES [J].
CHIRICO, WJ ;
WATERS, MG ;
BLOBEL, G .
NATURE, 1988, 332 (6167) :805-810
[6]  
CHOMCZYNSKI P, 1987, ANAL BIOCHEM, V162, P156, DOI 10.1016/0003-2697(87)90021-2
[7]   THE DYNAMIC STATE OF HEAT-SHOCK PROTEINS IN CHICKEN-EMBRYO FIBROBLASTS [J].
COLLIER, NC ;
SCHLESINGER, MJ .
JOURNAL OF CELL BIOLOGY, 1986, 103 (04) :1495-1507
[8]  
CURRIE RW, 1987, J MOL CELL CARDIOL, V19, P795
[9]   HEAT-SHOCK RESPONSE AND LIMITATION OF TISSUE NECROSIS DURING OCCLUSION REPERFUSION IN RABBIT HEARTS [J].
CURRIE, RW ;
TANGUAY, RM ;
KINGMA, JG .
CIRCULATION, 1993, 87 (03) :963-971
[10]   HEAT-SHOCK RESPONSE IS ASSOCIATED WITH ENHANCED POSTISCHEMIC VENTRICULAR RECOVERY [J].
CURRIE, RW ;
KARMAZYN, M ;
KLOC, M ;
MAILER, K .
CIRCULATION RESEARCH, 1988, 63 (03) :543-549