CONSTRUCTION OF MULTIFRACTAL MEASURES IN DYNAMIC-SYSTEMS FROM THEIR INVARIANCE PROPERTIES

被引:9
作者
BESSIS, D
MANTICA, G
机构
[1] Service de Physique Théorique, Centre de Etude Nucleaire de Saclay
关键词
D O I
10.1103/PhysRevLett.66.2939
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that multifractal measures arising from the symbolic dynamics of chaotic systems can be reproduced using iterated-function systems involving Mobius maps. This powerful approximation scheme is exact for hyperbolic billiards: The coding measures of zero-angle N-sided polygonal billiards are exactly rendered by N - 1 Mobius maps. We also approximate with success the coding measures for the anisotropic Kepler system.
引用
收藏
页码:2939 / 2942
页数:4
相关论文
共 13 条
[1]   RECYCLING OF STRANGE SETS .1. CYCLE EXPANSIONS [J].
ARTUSO, R ;
AURELL, E ;
CVITANOVIC, P .
NONLINEARITY, 1990, 3 (02) :325-359
[2]   ITERATED FUNCTION SYSTEMS AND THE GLOBAL CONSTRUCTION OF FRACTALS [J].
BARNSLEY, MF ;
DEMKO, S .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1985, 399 (1817) :243-275
[3]  
Barnsley MF., 2014, FRACTALS EVERYWHERE
[4]  
Dubuc S., 1985, ANN SCI MATH QUEBEC, V9, P151
[5]   BERNOULLI SEQUENCES AND TRAJECTORIES IN ANISOTROPIC KEPLER PROBLEM [J].
GUTZWILLER, MC .
JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (04) :806-823
[6]  
GUTZWILLER MC, 1989, PHYSICA D, V38, P160, DOI 10.1016/0167-2789(89)90186-3
[7]   INVARIANT MULTIFRACTAL MEASURES IN CHAOTIC HAMILTONIAN-SYSTEMS, AND RELATED STRUCTURES [J].
GUTZWILLER, MC ;
MANDELBROT, BB .
PHYSICAL REVIEW LETTERS, 1988, 60 (08) :673-676
[8]   CLASSICAL QUANTIZATION OF A HAMILTONIAN WITH ERGODIC BEHAVIOR [J].
GUTZWILLER, MC .
PHYSICAL REVIEW LETTERS, 1980, 45 (03) :150-153
[9]   INVERSE PROBLEMS IN FRACTAL CONSTRUCTION - MOMENT METHOD SOLUTION [J].
HANDY, CR ;
MANTICA, G .
PHYSICA D, 1990, 43 (01) :17-36
[10]  
Mandelbrot B. B., 1982, FRACTAL GEOMETRY NAT, P1