Decreased solar activity correlates with positive cosmogenic isotope anomalies, and with cool, wet climate in temperate regions of the world. The relationship of isotope anomalies to climate may be the opposite for areas influenced by monsoonal precipitation, i.e., negative anomalies may be wet and warm. Petersen (1988) has found evidence for increased summer precipitation in the American Southwest that can be shown to be coincident with negative C-14 anomalies during the Medieval Warm Period. The present study compares palynological indicators of lake level for the Southwest with Petersen's data and with the C-14 isotope chronology. Percentages of aquatic pollen and algae from three sites within the Arizona Monsoon record greater lake depth or fresher water from A.D. 700-1350, between the Roman IV and Wolf positive isotope anomalies, thereby supporting Petersens's findings. Maximum summer moisture coincides with maximum population density of prehistoric people of the Southwest. However, water depth at a more northern site was low at this time, suggesting a climate-isotope relationship similar to that of other temperate regions. Further analysis of latitudinal patterns is hampered by inadequate C-14 dating.