Predicting the Future: Advantages of Semilocal Units

被引:43
作者
Hartman, Eric [1 ]
Keeler, James D. [1 ]
机构
[1] Microelect & Comp Technol Corp, 3500 West Balcones Ctr Dr, Austin, TX 78759 USA
关键词
D O I
10.1162/neco.1991.3.4.566
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In investigating gaussian radial basis function (RBF) networks for their ability to model nonlinear time series, we have found that while RBF networks are much faster than standard sigmoid unit backpropagation for low-dimensional problems, their advantages diminish in high-dimensional input spaces. This is particularly troublesome if the input space contains irrelevant variables. We suggest that this limitation is due to the localized nature of RBFs. To gain the advantages of the highly nonlocal sigmoids and the speed advantages of RBFs, we propose a particular class of semilocal activation functions that is a natural interpolation between these two families. We present evidence that networks using these gaussian bur units avoid the slow learning problem of sigmoid unit networks, and, very importantly, are more accurate than RBF networks in the presence of irrelevant inputs. On the Mackey-Glass and Coupled Lattice Map problems, the speedup over sigmoid networks is so dramatic that the difference in training time between RBF and gaussian bar networks is minor. Gaussian bar architectures that superpose composed gaussians (gaussians-of-gaussianst) to approximate the unknown function have the best performance. We postulate that an interesing behavior displayed by gaussian bar functions under gradient descent dynamics, which we call automatic connection pruning, is an important factor in the success of this representation.
引用
收藏
页码:566 / 578
页数:13
相关论文
共 18 条
  • [1] ALBUS J S, 1971, Mathematical Biosciences, V10, P25, DOI 10.1016/0025-5564(71)90051-4
  • [2] NONLINEAR PREDICTION OF CHAOTIC TIME-SERIES
    CASDAGLI, M
    [J]. PHYSICA D, 1989, 35 (03): : 335 - 356
  • [3] Crutchfield J. P., 1987, Complex Systems, V1, P417
  • [4] PREDICTING CHAOTIC TIME-SERIES
    FARMER, JD
    SIDOROWICH, JJ
    [J]. PHYSICAL REVIEW LETTERS, 1987, 59 (08) : 845 - 848
  • [5] FARMER JD, 1988, EXPLOITING CHAOS PRE
  • [7] NETWORKS AND THE BEST APPROXIMATION PROPERTY
    GIROSI, F
    POGGIO, T
    [J]. BIOLOGICAL CYBERNETICS, 1990, 63 (03) : 169 - 176
  • [8] Layered Neural Networks with Gaussian Hidden Units as Universal Approximations
    Hartman, Eric J.
    Keeler, James D.
    Kowalski, Jacek M.
    [J]. NEURAL COMPUTATION, 1990, 2 (02) : 210 - 215
  • [9] MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS
    HORNIK, K
    STINCHCOMBE, M
    WHITE, H
    [J]. NEURAL NETWORKS, 1989, 2 (05) : 359 - 366
  • [10] ROBUST SPACE-TIME INTERMITTENCY AND 1/F NOISE
    KEELER, JD
    FARMER, JD
    [J]. PHYSICA D, 1986, 23 (1-3): : 413 - 435