THE DOSIMETRIC VERIFICATION OF A PENCIL BEAM BASED TREATMENT PLANNING SYSTEM

被引:67
作者
KNOOS, T
CEBERG, C
WEBER, L
NILSSON, P
机构
[1] Dept. of Radiat. Phys., Univ. Hospital, Lund
关键词
D O I
10.1088/0031-9155/39/10/007
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A new three-dimensional treatment planning system (?Ps) based on convolution/superposition algorithms (TMS-Radix from HELAX AB, Uppsala, Sweden) was recently installed at the University Hospital in Lund. The purpose of the present study was to design a quality assurance and acceptance testing programme to meet the specific characteristics of this convolution model. The model is based on parametrization of a non-measurable quantity-the polyenergetic pencil beam. However, the verification of the treatment planning model is still dependent on numerous comparisons of measured depth-doses and dose profiles. The test programme was divided in two basic parts: (i) model implementation and beam data consistency and (ii) model performance and limitations in special situations. The first part was scheduled for all photon beam qualities available before they could be used for clinical treatment planning. The second part was performed for selected energies only. The results indicate clearly that the model is well suited for clinical three-dimensional dose planning and that the TPS handles data as expected. For example, calculated depth-doses for open and wedge beams at depths larger than the depth of dose maximum and profiles for open beams shows a very good agreement with measurements. However, depth-dose deviations at shallow depths, especially for high energies, were found. Monitor units calculated by the system were accurate for most fields except for very large fields, where deviations of several per cent were found.
引用
收藏
页码:1609 / 1628
页数:20
相关论文
共 27 条
[1]   ACQUISITION OF THE EFFECTIVE LATERAL ENERGY FLUENCE DISTRIBUTION FOR PHOTON-BEAM DOSE CALCULATIONS BY CONVOLUTION MODELS [J].
AHNESJO, A ;
TREPP, A .
PHYSICS IN MEDICINE AND BIOLOGY, 1991, 36 (07) :973-985
[2]   A PENCIL BEAM MODEL FOR PHOTON DOSE CALCULATION [J].
AHNESJO, A ;
SAXNER, M ;
TREPP, A .
MEDICAL PHYSICS, 1992, 19 (02) :263-273
[3]   APPLICATION OF THE CONVOLUTION METHOD FOR CALCULATION OF OUTPUT FACTORS FOR THERAPY PHOTON BEAMS [J].
AHNESJO, A ;
KNOOS, T ;
MONTELIUS, A .
MEDICAL PHYSICS, 1992, 19 (02) :295-301
[4]   COLLAPSED CONE CONVOLUTION OF RADIANT ENERGY FOR PHOTON DOSE CALCULATION IN HETEROGENEOUS MEDIA [J].
AHNESJO, A .
MEDICAL PHYSICS, 1989, 16 (04) :577-592
[5]   DETERMINATION OF EFFECTIVE BREMSSTRAHLUNG SPECTRA AND ELECTRON CONTAMINATION FOR PHOTON DOSE CALCULATIONS [J].
AHNESJO, A ;
ANDREO, P .
PHYSICS IN MEDICINE AND BIOLOGY, 1989, 34 (10) :1451-1464
[6]  
AHNESJO A, 1994, COMMUNICATION
[7]  
AHNESJO A, 1991, THESIS STOCKHOLM U
[8]   A PHOTON DOSE DISTRIBUTION MODEL EMPLOYING CONVOLUTION CALCULATIONS [J].
BOYER, A ;
MOK, E .
MEDICAL PHYSICS, 1985, 12 (02) :169-177
[9]   DOSIMETRIC PRECISION REQUIREMENTS IN RADIATION-THERAPY [J].
BRAHME, A .
ACTA RADIOLOGICA ONCOLOGY, 1984, 23 (05) :379-391
[10]  
BRAHME A, 1988, ACTA ONCOL S, V1