ON THE TRANSITION TO CHAOTIC SCATTERING

被引:31
作者
BLUMEL, R
DIETZ, B
JUNG, C
SMILANSKY, U
机构
[1] UNIV BRISTOL,HH WILLS PHYS LAB,BRISTOL BS8 1TL,AVON,ENGLAND
[2] UNIV BREMEN,DEPT PHYS,W-2800 BREMEN 33,GERMANY
[3] UNIV ESSEN GESAMTHSCH,DEPT PHYS,W-4300 ESSEN 1,GERMANY
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 06期
关键词
D O I
10.1088/0305-4470/25/6/010
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A classical scattering system is chaotic if it possesses a fractal set of trapped unstable orbits, resulting in singular deflection functions. A scattering system is regular if it supports only a countable set of trapped unstable orbits. Its deflection functions are piecewise smooth with at most a countable number of scattering singularities caused by the trapped orbits. Despite the simple structure of the deflection functions, the Poincare scattering mapping (PSM) may be regular, hyperbolic or display mixed dynamics. Thus, the degree of chaoticity of the PSM serves as a finer scale for the discussion of the transition to chaotic scattering in the classical domain. In the quantum domain we show that the properties of the PSM determine the statistics of the eigenphases of the S-matrix, and that, if the PSM is hyperbolic, the eigenphases follow the statistics predicted by random matrix theory.
引用
收藏
页码:1483 / 1502
页数:20
相关论文
共 31 条
[21]   POINCARE MAP FOR SCATTERING STATES [J].
JUNG, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (08) :1345-1353
[22]   CANTOR SET STRUCTURES IN THE SINGULARITIES OF CLASSICAL POTENTIAL SCATTERING [J].
JUNG, C ;
SCHOLZ, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1987, 20 (12) :3607-3617
[23]   DOUBLE-SIDED PRINTED ARRAYS WITH LARGE BANDWIDTH [J].
LEVINE, E ;
SHTRIKMAN, S ;
TREVES, D .
IEE PROCEEDINGS-H MICROWAVES ANTENNAS AND PROPAGATION, 1988, 135 (01) :54-59
[24]   EFFICIENT MOMENT-METHOD ANALYSIS AND SYNTHESIS OF THE RECTANGULAR MICROSTRIP PATCH RADIATOR [J].
LEVINE, E ;
MATZNER, H ;
SHTRIKMAN, S .
ELECTROMAGNETICS, 1989, 9 (04) :451-471
[25]  
SJOSTRAND J, 1987, COMMUN MATH PHYS, V108, P391
[26]  
SMILANSKY U, 1989, 1989 P LES HOUCH SUM
[27]   ESCAPE RATE FROM STRANGE SETS AS AN EIGENVALUE [J].
TEL, T .
PHYSICAL REVIEW A, 1987, 36 (03) :1502-1505
[28]   A DEVILS STAIRCASE INTO CHAOTIC SCATTERING [J].
TROLL, G .
PHYSICA D, 1991, 50 (02) :276-296
[29]   A SIMPLE-MODEL FOR CHAOTIC SCATTERING .1. CLASSICAL-THEORY [J].
TROLL, G ;
SMILANSKY, U .
PHYSICA D, 1989, 35 (1-2) :34-64
[30]   ON A CLASS OF ANALYTIC FUNCTIONS FROM THE QUANTUM THEORY OF COLLISIONS [J].
WIGNER, EP .
ANNALS OF MATHEMATICS, 1951, 53 (01) :36-67