ELASTIC AND SUPERELASTIC PERCOLATION NETWORKS - IMPERFECT DUALITY, CRITICAL POISSON RATIOS, AND RELATIONS BETWEEN MICROSCOPIC MODELS

被引:20
作者
LIMAT, L
机构
关键词
D O I
10.1103/PhysRevB.40.9253
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
引用
收藏
页码:9253 / 9268
页数:16
相关论文
共 58 条
[51]  
SARYCHEV AK, 1983, J PHYS C SOLID STATE, V12, pL681
[52]   BEHAVIOR OF DEPLETED ELASTIC NETWORKS - COMPARISON OF EFFECTIVE-MEDIUM AND NUMERICAL-CALCULATIONS [J].
SCHWARTZ, LM ;
FENG, S ;
THORPE, MF ;
SEN, PN .
PHYSICAL REVIEW B, 1985, 32 (07) :4607-4617
[53]   ANISOTROPY OF PERCOLATION CONDUCTION [J].
SHKLOVSKII, BI .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1978, 85 (02) :K111-K114
[54]   CRITICAL EXPONENTS FOR CONDUCTIVITY OF RANDOM RESISTOR LATTICES [J].
STRALEY, JP .
PHYSICAL REVIEW B, 1977, 15 (12) :5733-5737
[55]   ANISOTROPIC CONDUCTIVITY IN FRACTAL MODELS OF PERCOLATION NETWORKS [J].
VANNIMENUS, J ;
KNEZEVIC, M .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (28) :4927-4933
[56]   THE BOND-BENDING MODEL IN 3 DIMENSIONS [J].
WANG, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (07) :L291-L295
[57]   PRECISION CALCULATION OF ELASTICITY FOR PERCOLATION [J].
ZABOLITZKY, JG ;
BERGMAN, DJ ;
STAUFFER, D .
JOURNAL OF STATISTICAL PHYSICS, 1986, 44 (1-2) :211-223
[58]   MONTE-CARLO EVIDENCE AGAINST THE ALEXANDER-ORBACH CONJECTURE FOR PERCOLATION CONDUCTIVITY [J].
ZABOLITZKY, JG .
PHYSICAL REVIEW B, 1984, 30 (07) :4077-4079