SELECTION, STABILITY AND RENORMALIZATION

被引:50
作者
CHEN, LY [1 ]
GOLDENFELD, N [1 ]
OONO, Y [1 ]
PAQUETTE, G [1 ]
机构
[1] UNIV ILLINOIS,BECKMAN INST,URBANA,IL 61801
来源
PHYSICA A | 1994年 / 204卷 / 1-4期
基金
美国国家科学基金会;
关键词
D O I
10.1016/0378-4371(94)90421-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We illustrate how to extend the concept of structural stability through applying it to the front propagation speed selection problem. This consideration leads us to a renormalization group study of the problem. The study illustrates two very general conclusions: (1) singular perturbations in applied mathematics are best understood as renormalized perturbation methods, and (2) amplitude equations are renormalization group equations.
引用
收藏
页码:111 / 133
页数:23
相关论文
共 62 条
  • [1] Andronov A., 1937, DOKL AKAD NAUK SSSR, V14, P247
  • [2] Aronson D., 1975, PARTIAL DIFFERENTIAL, V446
  • [3] CELL DYNAMIC SYSTEM APPROACH TO BLOCK COPOLYMERS
    BAHIANA, M
    OONO, Y
    [J]. PHYSICAL REVIEW A, 1990, 41 (12): : 6763 - 6771
  • [4] Bender Carl, 1999, ADV MATH METHODS SCI, V1
  • [5] PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS
    BENJACOB, E
    BRAND, H
    DEE, G
    KRAMER, L
    LANGER, JS
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) : 348 - 364
  • [6] RENORMALIZATION-GROUP AND THE GINZBURG-LANDAU EQUATION
    BRICMONT, J
    KUPIAINEN, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 150 (01) : 193 - 208
  • [7] BRICMONT J, IN PRESS COMMUN PURE
  • [8] THE APPLICATION OF CENTER MANIFOLDS TO AMPLITUDE EXPANSIONS .1. ORDINARY DIFFERENTIAL-EQUATIONS
    CARR, J
    MUNCASTER, RG
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1983, 50 (02) : 260 - 279
  • [9] Carr J., 1981, APPL CTR MANIFOLD TH
  • [10] LAMELLAR PHASE IN A MODEL FOR BLOCK COPOLYMERS
    CHAKRABARTI, A
    GUNTON, JD
    [J]. PHYSICAL REVIEW E, 1993, 47 (02): : R792 - R795