RENORMALIZATION-GROUP AND THE GINZBURG-LANDAU EQUATION

被引:82
作者
BRICMONT, J [1 ]
KUPIAINEN, A [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02096573
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use Renormalization Group methods to prove detailed long time asymptotics for the solutions of the Ginzburg-Landau equations with initial data approaching, as x --> +/- infinity, different spiraling stationary solutions. A universal pattern is formed, depending only on this asymptotics at spatial infinity.
引用
收藏
页码:193 / 208
页数:16
相关论文
共 11 条
[1]   MULTIDIMENSIONAL NON-LINEAR DIFFUSION ARISING IN POPULATION-GENETICS [J].
ARONSON, DG ;
WEINBERGER, HF .
ADVANCES IN MATHEMATICS, 1978, 30 (01) :33-76
[2]   PATTERN PROPAGATION IN NONLINEAR DISSIPATIVE SYSTEMS [J].
BENJACOB, E ;
BRAND, H ;
DEE, G ;
KRAMER, L ;
LANGER, JS .
PHYSICA D-NONLINEAR PHENOMENA, 1985, 14 (03) :348-364
[3]  
BRAMSON M, 1983, MEM AM MATH SOC, V44, P1
[4]  
BRICMONT J, UNPUB
[5]  
BRICMONT J, IN PRESS COMMUN PURE
[6]  
COLLET P, 1992, HELV PHYS ACTA, V65, P56
[7]  
COLLET P, 1992, COMMUN MATH PHYS
[8]  
COLLET P, 1992, SPACE TIME BEHAVIOUR
[9]   DYNAMICAL PROPERTIES OF PROPAGATING FRONT SOLUTIONS OF THE AMPLITUDE EQUATION [J].
DEE, G .
PHYSICA D, 1985, 15 (03) :295-304
[10]   ANOMALOUS DIMENSIONS AND THE RENORMALIZATION-GROUP IN A NONLINEAR DIFFUSION PROCESS [J].
GOLDENFELD, N ;
MARTIN, O ;
OONO, Y ;
LIU, F .
PHYSICAL REVIEW LETTERS, 1990, 64 (12) :1361-1364